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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE NO. 1096

ON SUPERSONIC AND PARTIALLY SUPERSONIC FLO’#S

By Stefan Bergman

SUMMARY .-

The present paper is one of a series of papers to ex-
tend the analytical methols used so successfully in the
theory of an incompressible fluid to the case of a compress-
ible fluid,

—-

A stream function of an irrotational flow of an incom-
pressible fluid satisfies the Laplace equation.and, con-
versely, the, imaginary part of an arbitrary analytic func-
tion of a complex variable can be considered as the stream —
function of a possible flow; many results of the highly de- - -
veloped theory of analytic functions can thus be interpret-
ed as theorems on the motion of an incompressible fluid.

By using the hodograph method (introduced in the theory
of compressible fluids _by Chaplygin) a formula had previous- “-
ly been 03tained for the stream function of a possible sub- -
sonic compressible flow in terms of an arbitrary analytic
function of a commlex variable; procedures for using some
methods and techni ues of the theory of analytic functions%
in the theory of subsonic flows have likewise been indicated-, ~
and, as a consequence, new flow patteras ha,ve been obtained.
These flow patterns include examples of fl~ws around_ symmet-
ric and ncnsymrnetric obstacles, under th~ assumption of the
true pressure-density relation, p=opk, a and k being
constants.

In this paper the foregoing resulte are improved and
completed. A formula (analogous to that for subsonic flows)
is derived, which =epresents a stream “function of a possible
supersonic flow in terms of two arbitrary differentiah~e ““
functions of one real variable. Finally, some instancei ire- ““-
discussed in which flow pattern defined in two neighboring
parts of the plane can be combined into one flow”pa~tern de-
fined in the combined domain. This last method leads, in
some instances, to partially supersonic flows.
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INTRODUCTION

‘The development of. research in compressible fluid the-
ory has made it desirable to have adequate mathematical
tools for dealing with problems of compressible flows. One
of the reasons for the success of mathematical methods in
the study of two-dimensional irrotational steady flow% of
an incompressible fluid is based on the fact that it is
possible to represent the stream function of such a flow as
the imaginary part of an analytic function of a complex
variable. As a consequence, various results in the highly
developed theory of analytic functions can be applied to
yield solutio~ of problems. in hydrodynamics.

In previous publication of the author. (references 1
through 5), this approach has been generalized to include
the case of compressible fluid flows: this was accomplished
by representing the stream function of a possible flow of a
compressible fluid in terms of two arbitrary functions of
one variable. In that pa~t of the flow where the character
of the flow is subsonic, one of these functions is an ana-
lytic function of a complex variable, the other, its conJu-
gate. In the region of the flow in which Its character $s
that of a supersonic flow, each of these two functions is a
different function of one real variable,

The development of this approach raisee 8eVt3rEilcomPlex
and fairly difficult questions; the purpose Gf this report
will be to discuss, in some detail, the problems entailed by
these methods.

In order to facilitate reading, in sections I and II
the general idea of this method of approach will be summa-
rized,

This investigation, carried out at Brown University,
was sponsored by and conducted with the financial assistance
of the National Advisory Committee for Aeronautics.

The author would like to express his sincere apprecia-
tion for the assistance and advice he received from Mr.
Leonard Greenstone and to thank Mr. Herman Chernoff for his
help with section III and Mr. Bernard Epstein for his help
with section IV.
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NOTA!?IOli

In daalj.ng with differ~ntial equations the following
notation is often used: -.

a= [~02 - *( k - l)q+aj speed of sound

ao speed of sound at a stagnation point —

an coefficie ts in the series expansion of 1!
22

in powers
of e ; also usei& in the sGnse of equation (72~

I)n coefficients in the series expansion of T-l in
powers of ~?) ; also used in the sense of equa-
tion (72)

Cn (See equations (146), (148).)

dn(~) dn(s), dn(3}, &n(4)s (See equations (86), (87). )

e base of Naperian logarithms —.

exp (x) = ex

f, g arbitrary analytic functions, in the subsonic case;
arbitrary twice differentiable functions of one
real variable in the supersonic ease

[01 (z)
[-d(z) = -(z) _ dg

g

gcd (z) = g(z)

--

●
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,g[n] (Z) nth iterated integral of g(z)

(h=k
- 1 112

k+l )
;

‘= *for ‘=1*4

k constant in the equation of state p = Opk; the
ratio of specific heats at constant pressure to
constant volume; k = 1.4 for air

‘(”)‘(%+ - ‘2(H))
P pressure

Po pressure at stagnation point

q magnitude of the veloclty vector

*
q = qei6 velocity vector

.

●

�

schlicht= univalent

s = 1-T

Sn (See equation (87),)

u, v Cartesian components of the velocity vector

x, y Cartesian components In the physical plane

A constant in the Von K&rm&n-Tsien equation of state

P =A+;

B==”for M>l

J1)(A) =

-/

f2(fi1)dAI

“ o
A“

~(n+l)
(A) = - r (HAA(n)(A1) +Q(AI) E ‘n)(Al))dA1

“.
o

4
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~(n)(A) (See equations (159).)

~(n)(~) = En(A*)

F =_(Nc+N2”)= ~:::1::~3 [-( Zk-l)M4-4(3-2k) Ma+ :6]
——

for k= 1.4 (See equation (19). )

F3
I*

= N12+ – (See equation (45). )
2 ?JA

Fm polynomial .apTroximation of the mth degree in
eaA

to F

172 .(See equa~ion (158),)

~+~
1

( .rH = exp - Nd( @~))= “1

[ L.1 2(k-1)

(l~Ma)l’4 1+

;

-m $(k- l)~:a

in this sense H is used only in the series expansion “
of W (See equation (17), )

,

H=
f
“q Py dq.; in this sense H is used only as an indepe-n~-”

.)
ent variable (See equation (32). )

Im imaginary part of

po’
L(H) = (M2 - 1) (See Z(H).)

p(H)2

(2n)!
Jn)( 2A) = ~nn, H(2A)@(2h)

.

—.
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(2n)!
Lm ‘n)(2A) = Znnj H(2A)L&(n) (2A)

M local Mach number; M = q/a

M1, Ma, M3, M4 (See equation (57). )

N.. (k+l) M“
8 (1- Ma)3’a

N1=- (k+-1) 1’44

8 (M2 - 1)3’=
.-

w

n“

—

—

r

(See equation (107), an& appendix 11. )

~m(n) ~(n) computed employing Fm instead of F

Re real part of

U, Ul, ~J2, U* (See equations (84), (85), ff, , (173), (174).)

V(A, 6) = H3-l~(A, 0) (See equation (50).) V = Vl+Va

s

-.. —.
n=l

6
E
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Ca

v~(f, m) = g(n)+ ~M(n) (A) g[nj(~)
k

n=l

v., VI*, V2* (See footnote, p. 24. )

W(f, n) (See equation (158). )

x (See equation (200) , ff. )

z =A+i~”\

B = l/k-l; P = 5/2 for air

{“= (-s(k+ 1) :)”3

,

---

,- .—
‘n =A-e; fi*=n - a/2 (See equation (155). )

6 the angle the velocity vector ~. makes with some

fixed di~ectioa; T = qeig; “also 6 =~(f - ~)

(See equation (46). )

[

h-l + T
h=:log~-~+~log _L ““ 1

(See equation (20), )
,. I.+Th h - “T

[* =c -a/2 (See equation (155).)

P density

P. density at a stagnation point; equation (11)
,

a=T- 0.15, equation (74);_ also a constant in the _.

pressure-density

T=(k-’)q2
2aoa

T =la
;~ for air, assuming

v stream function

W=H~

relation p = up k

ao = 1

.-

7
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.

W* =HIV* ‘

a2V
A Laplace operator: AT = —+

3x2 ~= ‘ (R= )’
H

A(H) =

r
~) dH = ~ tan-l (hB) - tan-’ B

,

~w (v) = v&-/-f2(f+n)v=o

Q(c) an analytic function of a complex variable satisfying
certain conditions

Remark: Observe that quite frequently functions w-ill be con-
sidered in different planes although the notation will not,
in general, indicate this. Thus , given f(x, y), let

x = X(xl, X2)

y = y(xl, X2),

to obtain f(x(xl, x~), y(xl, X2)) = fl(xl, X2). The super-

script will, in general, be omitted and only f(xl, yz)
written, since the meaning will be clear from the context.

I

In the following, the fluid flow to be considered will
be supposed to be that of a two-dimensional irrotational
steady flow of an inviscid, compressible fluid.

The assumption of the law of the conservation of matter
leads to the equation of continuity:

(1)

where p is the density, (u,v) the Oartesian components of
the velocity vector, and (x)y) the Cartesian coordinates in
the plane of flow.

This equation implies that the differential expression
Pudy - pvdx is a complete differential - that is, that it

a

*

—-

<

.
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is the differential of some function,
called ‘tstream function of the flow.’l

Thu ~

al) = pctly - pvdx

which clearly implies the relations

say IJ(x,Y), the so-

The assumption that the flo~ is irrotational may be ex-
pressed mathematically hy the equation

au av o—-
ay K=

(2)

(3)

(4) $

This implies that ,udx + vdy is the differential of some
function, say, cp, the so-called ‘~potential funotion of
the flow.fl Thu S ,

dcp = Udx + Pay (5)

so that

392 = u, &
ax

=V
ay

“(6)

and q, the magnitude of the welocity vector, is given by .

Equations (3) and (5) imply the system of equations:

relating the stream function and potential function of a
flow described above.

9
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If it be assumed that the fluid motion represents an
adiabatic process, then the equation of state assumes the
form:

where A, a and k are constants (k = 1.4 for air), and

F is.the pressure.

As the equation of state expresses the pressure as a
function of the density alone, the first integral of
Newtonls law of motion for a gas may be easily obtained in
the form of Bernoullits equation:

‘1~qa+
dp

p(p)
(lo)

The pressure, p, may he elimtnat~ii with the aid of some com-
putation (which is omitted here) by combining (9) and (10)
to obtain —.

1 1

[
P=PO1 -%$]%+ ..~ {(s)a+($)?1= ’11)
Here Po, a. are the density and the speed of sound, re-

spectively, at a stagnation point.

If P is eliminated from equation (8) (giving p

[1

its
value in 11 and substituting for the expression in
equation 7) it may be seen that (8~represents a syetem
of two nonlin;ar partial differential equations for .9
**

and

In the ease of an incompressible fluid flow, where p
is constant, equation (8) represents a system of two linear
partial differential equations, and it is these equations
which prov’,de the means whereby hyd~odynamice may be studied
as an app~ioation of the theory of analytic functions of a
oomplex v~riable,

*

In order, in the case of a compressible fluid, to ob- #
tain a system of linear equations, it lsbnecoseary to replaoe ,
this apyroaoh by an alternate and more complex one, namely,

*
10
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1

the ‘fhodograph method, n according.to which P and W are
considered as functions not of the Cartesian coordinates of
the plane of flow, (x,y), but of q and 6, where qe~6
is the velocity vector. Function denotes the speed and
a the angle which the velocity vec~or forms with some fixed
direction.

Consider a steady two-dimensional flow pattern; then at
every point (x,Y) there is a certafn velocity vector
Consequently,

qei~ .
to every point [x,y) of the flow pattern, it

is possible to associate the pafr of quantities, q
If q

and e.
and -0 are now considered as the polar coordinates

of ,some new plane, the “hod~~raph plane, li to a streamlinti
of the given flow pattern, there will correspond a line in
this plane. The image of ,tha flow patterns so Obtained is
called the hodograph of the flow pattarn.

‘tY

——’ \

Xigure 1.

Figure 2.
In addition to having the tmage of the flow in the

hodograph plane, it is frequently useful to have” the image
of the flow in the “logarithmic plane, “ that is, the plana
the Cartesian coordinates of which are log q and 6. Ob-
viously, it is possible to consider the stream and poten-
tial functions aq defined in the hodograph or logarithmic
planes.

‘!

e
That is, if (xjy) are

given as functions of
and 6 ,

log q
x = xl(q,6)

Y = y~(q,O)

or of log q and e

11

9
J?igure3.
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.

x= x2(10g q,e)
.

Y = Ya(log q,O)

then q, Y evidently may be expressed as a function of these
variatles

J?(Y,Y) =q[xl(q, 6),yl(q,6)] =cp[x2(log q,~), ya(log q,6)]

4(X,Y) =lJJ[xl(q,6),y~(q,6)-j= t[~a(log q, e))ya(lo~CL,6)]

OrI the other hand, if the potential and stream functions are ,
given in the hodograph or logarithmic ylanes, that is, if

respectively, then it is not d~fficult to determine the
corresponding streamlines In tbe physical plane (the actual
plane of the flow),

In the ca”ee of an incompressible fluid flow, the po-
tential and stream functions considered in the logarithmic
plane, that ie, as a function of log q and 6, satiOfy
a system of partial differential equations which has exact-
ly the same form as equations (8). Thu S ,

(p being constant),

Thereforel except in problems of a special character,
it is more convenient, in the case of an incompressible
fluid flow, to operate in the physical plane (the (x,y)-
plane).

The situation changes completely In the case of com-
pressible flows, for, as has been mentioned, cp. and v
considered as functions of x and y satisfy a system of

●�

9

1!
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nonlinear partial differential eauations. If, however,
!and ~ are considered as functions, not of x an? Y, ut

of logo- and then , as Molenbroek and Chaplygin have
shown, cp and .$ satisfy a system of linear partiaI differ-
ential ea,uations: namely,

ikp 1’”
.’.

q ?y.r—=- -—
ao P aq

‘f (12)

where p is given by (21). (See reference 6.)

If CP is eliminated, then the following partial dif-
ferential equation of second order is obtained for $:

(13)

In the case of an incompressible fluid, SO(W) becomes for
an apurcpriate choice of units —-. ‘-

= Q
a f?

(14)

and, hence, the general representation of a possible stream
function in terms of an arbitrary analytic function of one
complex variable may be obtained: namely,

.,

W(log q, 6) = Im~(~~ , ~= Q+i”logq (15)

where ~ is an arbitrary analytfc functbnof the complex
variable E. ~

In previous publications of,the author, a generaliza-
tion of (15) for the case of a compressible fluid has been.
Drovfded. The formulas of this generalization are the mean$
by which various flow patterns of a compressible fluid may
be obtained. (See eauations (24), (25), . . . .}

Naturally, a procedure for obtaining flow patterns Is
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.

only the first step in the development of the theory, eince
in most cases it---isnot “some” flow which is required, but,
rather, the flow around a given profile which must- be known
(as well as the laws which govern the motion of a compress-
ible fluid). However, it may te noted that, in the subsonic
case, at least, an approximate solution of the problem may
be obtained if, for the function g in equation (24), the
function which represents the complex potential in the log-
arithmic plane of the corresponding incompressible fluid
flow is substituted.

In the following, It will be convenient to consider the
subsonic and supersonic cases separately. This will ‘be done
in sections II and 111, respectively,

II - THE SUBSONIC CASE

As was indicated in reference, the function V* (which,
when multiplied by

where

T2=1-M2

4

(16)

(17)

F= 0.21 0.63 + 0.45-o.121?2-1-0.51 +—- — —
Ta !r4 T6

and T and A are connected by the relation

“

yields the stream function $ ),
h and b

considered as a function of
satisfies the equation:

where

(19)

e

.

14
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A= V“(ia+$”’(%) (20)

Expressions (16), (19), (20) have been evaluated for k =
1.4* In references 3 and 5 they are given for an arbitrary
k.

If 1? is identically zero, then (18) becomes the
Laplace equation

(21). .

and

if”= Im ~(Z)], Z= A+ i13 (22)

is the “general solution” of this ea.uation; here g is an
arbitrary analytio function of the complex variable Z.

w: ‘or ‘= ‘“ ‘pani”te:n-t;:a~~:;)-;:a::i~,;:s;o.‘compressibility equation,
called ‘Ipseudo-logarithmic’f plane) beoomes the Laplace ,
equation.

The Von K&rm&n-Tsien method of obtaining compressible
flows around closed bodies is based on this assumption (i.e.,
that the pressure-density relation is of the form

p=A+z
P

instead of the adiabatic relation (9) em loyed by the au-
thor). 7llhe stream functions in the (A,e -plane are then
harmonic functions. (See references 4 and 5, )

As was proved in referenoe 2, the representation (22)
of the “general solution “ in terms of an arbitrary analytia
funotion of a complex variable can 3s extended to the case “
where F is not identically zero, but is any function
satisfying certain conditions. --

Under the assumption that the function F* and its
derivatlTes satisfy the inequalities

15

\
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d-KFIII c(K+ 1)!
K ~ K+2 * A<(3 and K = 0,1,2,. . . (23)

dh (-A)

where c is a fixed constant, it was shown in reference 5
that the expression

where

Jo](z) = g(z) 7

I

M(z) = r“g[:-z] (zl)dZl
g

J
“,.o’

n = 1,2,3,, . . .

(25)

( (Z) an arbitrary analytio function of the complex variable
TZ represents a solution of

u– + F*u = O
Zz

The difficulty which arises in the further development
of this approach arises from the fact that the function F
which actually appears in (18) is a rather complicated func-
tion of h, and it is got clear offhand whether or not it
satisfies the inequalities (23). In order to overcome
this difficulty, two possible alternatives may be e-rnploydd:

In reference 5 iiwas proved that in the domain
A< O1” (which is the domain under consideration in the sub-
sonic case) F, given by (19),
form

may be represented in the

lThe Q(n) depend only on the function I?w and there-
fore being independent of the particular f-nction g(z) can
be computed and tabulated, once and for all.
I and 11.)

(See append==s

.

*

.

●

,

.
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(26)

(See table 2.)

If, now, the infinite sum (26) is replaced ~y the
finite sum

. m

Fm =
7

CneanA (27)

n~a

(or approximated by some other polynomial in eaA), then,
as may he shown rather easily (see reference 3), for every
finite m, F’m and its derivatives satisfy the inequalities
(23); and hence the representation (24) m;y);e employed to-
yield solutions of (18) (F replaced by m

As has been pointed out in previous publications of the
author, the solutions of (18), when F is replaced by Fm,
will then assume the following form

the subscript m in, CJm(n) indicating the dependence of
~(n) on the m chosen, so that it seems likely that the
aotual solution of (18) may be written in the form

and this was shown to be the aase~ (See referenee 3.)
,

}
The disadvantage of ~his approach lies in the fact that

for values of M close to M = 1 (corresponding to values
of T near T = o), it is necessary to-use a large number
of terms of (26) in order to obtain a good ~pprox~mation for
F; that is, m of (27) must be chosen rather large.
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In appendix I of reference 5, the developments of T

and T-l in powors of ~aA were given, 3y substituting

these expressions for T and T-l in (19), the des~red

expansion of F
2A

in powers of e was obtained. In this

10

appendix the values of TIo, that 1s, 7 anean~, where
L

m n=O

T F=
)

ane2nA
P are compared with the exact values of T,

L
n=o

and the difficulty mentioned above for high Mach numbers may
then be observed.

In this case the tietermfnation of the Qm
(n)

does not

involve any theoretical difficulties, but for large ml
does entail difficulties of a computational nature.

py ~Note that in the neighbctrhood of T=O, that is,
= 9 and l/T can tie &eveloPed in a series of

1/3
c= (-3.6A) ,1 If these series are substituted in (19)
for T and 1/9,. a tieveloyment of 3’
~, which holds for M < 1,

in a power series of
:s obtained in the neighborhood

of Msl.

2. The second alternative consists in proving that the
function F as defined by (19) does satisfy the inequali-
ties (23), and therefore hy the theorem stated in aypendix I,
the series (24) will converge.

Equations (96) determine each Q(n) up to a constant;
this constant can be specified by the requirement that f~r
some fixed value, say q,= q. (and, therefore, for some A,,.
say, A = ~o),

~(n)
vanishes . If the same q. is chosen

for all n, n=l,2, . . ,, then the physical meanin~ of
such a choice is the following:

Consider a flow, the speed of which at every point is
nearly qo; then, in the pseudo-logarithmic (the (A,e)-
plane), the flow rese~bles that of a distorted flow of an _
Incompressible fluid,

11’or general k, t
~&.o, . =

(-3(k+l)(X/2) )1/3. This -choice
yields T =“

2Note that ‘in ty.e incompressible case, h and log q
are identical.

*

b

.

.

lg



N.4CAT??Yo ,~1096

The most natural choice, then, to make for qo, would
~el ~. = *; that iS, assume all Q(n) vanish for h = -~.

In appendix I,
F whic;2i;c~;i;

proof is given that the s=ries
vergss, under rather gensral conditions on
in particular the case defined by (19).

~or v~l~eg of ~ close to 1, many terms of (24) have
to be taken into account in crder to obtain good approxi-
mation to the stream funotion: consequently, it is neces-
sary to have as many of the ~oefficients

~(n) = (Sri)! K(2wJn) (2A) (30)
mn:ti

of

(31)

as possible. In append.tx II, expressions for Q(n) (2A),
‘ n = 1,2, . . . ,8 are derived, the first four of which can
be expressed in closed form as a function of T, while in
the expression for the last four, an integral appears; how-
ever, the integrand in this case can be written in closed
form, so that at least numerical computation of the Integral
will not prove too difficult.

Tables of several of the functions involved have also
been commuted. (See table 5. )

~Except for q. = 0, there is no reason to distinguteh

any qo from any bther, and if
Qo be chosen different

from zero the question arises as to why this particular value
of qo Was chosen and not some other,

19
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III - THE SUPERSONIC CASE

Every function $ which satisfies equation (13), or
(setting

H.l’P/qdq’) (32)

the equation

1-‘4fge+$HH.0

Pa
(33)

can be considered as the stream function of a possible com-
pressible fluid flow.

.

In this section M will be taken greater than 1.

Sinoe %oth M and p are functions of q, and. since
equation (32) may be interpreted as defining q
tion of H;

as a funo-
oonsequectly, the coefficient of $66 In (33)

is also a function of H, say, L(H) - that is,

L(H) =
M2-1

SO (See Notation. )(~4)
Pa

The reduction of equation (33) to canonical form may be ac-
complished ly introducing the new variable
fined by

A=A(H), de-

H

lThis H is not to be confused with the H defined by
eauation (16). The lower limit of integration in (35) is to
be chosen later.

20
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so that the differential equation (33) assumes the form

‘%e ‘@M-
[

1 tjL(H)1— *A=o2L(H) aA
(37)

the equation is then in the required canonical form.

The coefficient of $~ while it is a function of L,
is difficult to express exp~icitl.y as such, but may, on the
other hand, be given comparatively simply aa a function o-f
M. If III(2A) iS defined by

1 aL(H]
——=4NI(2A)
2L(H) aA

the expression

(38)

may then be obtained by formal computation; further A(M)
then may be seen to assume the form

A(M) = ~ tan ‘z(h~~) - tan “ (/m)

= ~ tan-l(h B) - tan-’ B (40)

where

Ba =Ma-l (41)

and

J-
-.

-1
h==

k+l.

It is nossible to simplify equation (37) by the use of the.
following transformation.

2i
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.

WA,6) ‘HI V(A,e) ~~

zA

(~
HI = i?xp – Nl(Al)d Al

).

V(A, e) then satisfies the eauat ion

’00 -VAA+4J?I(2A)V=0

where

(44)

[

. ~ 5(k+l) + 12k+ 6LG14—-
64 Be

(4k+8)-(3k–l)B2
J

(45)
F B’s

Finally it is convenient to use an alternate form for
equation (44\, If E, Q are defined by

E.=A+”e, q= A-8 (46)

then (44) assumes the form

v~n+ml(g+q)v=o (47)

The general solution of e“ua~ion (47), which iS of hyper-
bolic type, may be represented by a formula which involves
two arbitrary, differentiable functions of one real var”i–a-ble.

In reference 5, appendix III, two different methods
were considered of obtaining such a general solution. The
first method is essentially based on obtaining the repre-
sentation by use of Riemannfs function of equation (47),
while the second is the analogue, for hyperbolic eouations,
of the representations (24) and (31), for solutions of the
elliptic eauation (18). (See appendix 111 of the present
report. )

The validity of this representation follows at once
from the following:

.

.
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l?hecrem: Let

p(v) = Vgq +L-2(t+q)v=o (48)

where Q ( ~) (0 is considered as continued for complex val—
ues of the ~rgument) is an analytic function of the complex
variable c, which function is supposed regular for

l~lSAlj then, there exists a set of functions

W(A) , n = 1,2,..., A=~
2

(49)

so that

is a solution of (48), where

m
(51)

and

fc~l(~ ) =f( c), g co](q) = g(n)

‘J
o

‘J
o

f and g being two arbitrary, twice differentiable func–
tions of 5 and ~, respectively.

The proof of this theorem will be given in appendix 111.
Note that in slightly different form this theorem was enun–
ciated without proof in reference 5.

23
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This theorem cannot, however, be a?pliefi directlY to
equation (47) as FL given by (q~) has a pole for .4 = O.
There are, however, several possibilities for overcou!in~
this difficulty. ~ For -example, F1 can le approximated in

the supersonic range, which is under. consideration by a
function Fm, which satisfies the conditions on f) in the

theorem.

In many Instances, the whole flow lies in a part of
the supersonic region and the theorem then can be appli~d
directly, merely ly shifting the origin, a.s ia done in the
following example. In appendix IIT., this will be discussed
in more detail.

The following extremely simple example is intended to
serve only as an illustration of th.e...ethosoadescribed above
for obtaining flow patterns in the hod.ograph (or’related)
planes. A discussion of the procedure necessary for determ-
ining the .corres~onding flow in the physical, the (x,Y),
plane will then conclude the section,

Choose for the f(k), g(m) of equation (51) the func-
tions”i

f(&*) = JOO($* + 0.1)2

g(n*) = -loo(ll* + O.l)a )
(52) 1

If in (48) ~ = O, the corresponding flow in the
(~, n)-ulane will be

lJ* = loo [(g*-+ 0,1)=–– (l-i*+ o.1)~] (53)

These streamlines are indicated in figure 4.

In the following the general case Cl # O will be
considered.

The evaluation of the functions 2
—...—. .__!Lv~

introduced— .

‘See appendix 111. Ess~ntlally, ~*, q*
\Ln~lio; es:ectively,

differ from
only by a constant and V* is the

of-equations (48), (50) when the corresponding
value of 5*, q* has been substituted for ~, ~, respec-
tively.

‘See appendix 111. Functions Y:, v% are obtained from
v Vz,1* respectively, of equation (51) when the corresponding
values of t*, n* have been substituted for ~, ~,
tively.

respec-

—

●

d

. —
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in equations (51) then will consist of the following steps}

f(g*) = Jo](p) = loo(~* + 0.1)2

[’ *+0,14= 100 (
12

J+*) = 1001-(8*+-0.1)560

In table “6, the values of

_m-_(o.lf
3 12 1

(o.ly ’f*”~ (o.l)4g*.—— —
6 12

(0,1)3 f*3 -(0.1)4 g*2——
la 24

(0.1)5-—
63 1

(0.1)5 E* (0.1)6-—
60 360 1

df
and f@l (g*), n = 0,1, Z,3,4

z
for a given set of values of 5* are tabulated.

g(n)(~*) andRemark: S ince g(n*) = –f(~*), the values of

dg

z~
may also be obtained from table 6.

The values of V;, V:, *
and P =V:+v: as well aa

** =H V*, are tabulated in table 10; 4* is a function
of E*, q*.

.

In order to carry out the transition to the physical
plane, the values of a~*/aq and a~*/a8 are neqded.1

—.. —
‘Henceforth the asterisk which indicates the dependence

of the function on ~“, q“ will be omitted, as this will,
in general, be clear from the context.

25
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Figure 4.
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[

(~+1) (112+~)2
$q*=H -— v + vn*

8. j33 J

where

r co -1

-1

[

m

ag
vq* = — T 1~(n) ~[n-ll(~x) + M2 + 143

aq* + _.

and

(56)

(57)

(58)

x+ t“+ 11* (n)”
A=2 ; 2A* =

~E(n)

gA* ; the use of Q is to call

attention to the shift of the origin; Kl, Ma, M3 are equal
to the expression in the first, seoond, and third brackets,
respectively.

27 .-
.
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It follows that

=B- 1 (k+l) (B2+1)~H– —
4 ~3 V+ M1+2M2+-2M3+M4

1
.. .

+~ =H(V*-
E

V# = H [Ml - MA]

In table 9 the values of Ml, Ma, M3 , MA ,~~q, and +tj
tab~lated.

In addition, in table 9 the values of

and

‘e

(59)

(60)

.

sre -- —

.

(61)

are also given.

As has been shown in reference 3, the corresponding
values of x and y, that is, the image in the physical
plane of the hodograph flow, may be obtained from the farmu—-.
las’-—

&.

lThe integrals are to “be understood as taken around the
corresponding contour.

2R

.

.
.
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f P(J is supposed set equal to 1 here),

How, along a str earlline

that is ,

so that if th-e integration
(62) then assumes the form

is carried out along a

:

(62)

(63)

(64)

streamline,

1

}
(65)

Similarly, if the integration is carried out along rI* =
constant, f’r~m the fact that

Zq
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t“-n*=2~

~*+q*=2A

it is easily seen that

d8 = : d[ = dh

dq = ~Ad~=~de
B

q* = constantand therefore along

(See diagram II, p. 85!)

IV – !CHE MIXED CASE

.

.

1(66)

1(67)

To every analytic function, g, of a complex variable
z there corresponds a solution W“(z) ‘~”(~j’ti) of eq~a-
tion (18) obtained by substituting g into the operator
given in equation (24). Referring to equation (16),

W= O*H–’ may then be interpreted as a stream function, in
the psuedo–logarithmic plane, of a possible flow pattern of
a compressible fluid.L
—- ———

‘It iS necessary to speak of ‘possiblet’ flow patterns,
since it may happen that the image in the physical plane of
a flow obtained in this way, is multiply covered, in which
case the complete flow pattern has .no physical significance.
(It should be noted, however, that, in this case, those parts
of the flow pattern which !,’? “schlicht” do possese physical
significance. )

3C

.

.

.
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This flow pattern Is defined in every (simply connected)
intersection of the domain of regularity of

7
with that of

the domain L (L is that domain of the (X,e ~plane for
which Gas 3A2, A < o), which intersection is supposed to in-
clude the origin.

If , for g, the complex potential of an incompressible
fluid flow (in the pseudo–logarithmic plane) is substituted,
the resulting function is defined in a domain H which in
many instances may lie partially outside L. ‘(=ee fig. 5.)

Figure5.

Despite the fact that the function W, may be regular
in the whole domain ~, the procedure which has been de-
veloped so far, yields only those values which lie in that
part of ~ which lies in L, so that the auestion arises
as to how to decide in what regions outside of L, W* ex-
ists, as well as the question of how it may be determined.

In order to evaluate $* for those values of A which
are near zero - that is, for high Mach numbers - many terms
of the operator (24) are needed, so that it would be desir—
able to find other methods of evaluating $* for these
values .

Call this domain in which the operator (24) may be ex-
peditiously em~loyed El. In the remaining part of the in-
tersection of L and H, W* may be obtained by analytic
continuation, as well as in that part of H which lies out–
side L.

In section 17 of reference 3, the ‘general ideas under–
lying such a procedure were developed; in the following, a

31
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more detailed discussion of this procedure will be given,
and some methods indicated for overcoming certain difficul-
ties Which arise in its application.

In the following, the particular solutions which. are
due to Chanlygin will be ptien, in which case it is conven-
ient to replace the variable q by

=(k-l) ~a
T ~a=—

2aoa Ma + 2$

1
@k_l= —. —

Obviously, for k = 1.4 and a. = 1

the values of T for cor$e~ponding M, B, T, vfao, 1
given in tables ~ and 4.

If equatia~. (13) (from which (18) was derived”) is
pressed in terms of T and. 8 , it assumes the form

(l_ T)-Br’_-T(2@ + 1) 1[.T (l-. ) “’”‘+-T)-’.:]=0

(6g)

(69)

(70)

ar~

ex—

(71)

Following Chaplygin and separating variables , the solution
of (71) may be written in the form

m

~(T,6) =I Two l-roe
av(T)cos —

.L
+ hv~T) sin — (7’2)

.L . .. .. . .U=(y

(-L~e~L)

where av, bv satisfy the differential equation

32
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.

which can easily be transformed into the hypergeometric
eouat ion.

Unfortunately, the yower series for these functions
converge so slowly that. in most cases , this approach must
be abandoned for computational purposes. (See sec. 17 of
.refereqce 3.) On the other hand, if certain changes in this
approach are made, numerical results may be obtained. Two
such procedures will be discussed in the following”:

1. The solutions of (73) are expanded in the form of a
power ~eries, not, however, around T = O, which is the
case of the hypergecmetric series~ but around some cOnven—
iently chosen value of 7 which lies inside the interval
under consideration. Ii’orexample, it will often be conven-
ient to. introduce, for T, the variable

a= T– 0.15 (74)

Since the particular solutions are often considered only for
a small range of variation of T, say, 0.13 ~ T ~ 0.20,
the coefficients of (73) may be approximated by polynomials
in 0, so that if, say, L = lT/2, the equation approximat-
ing (73) is for @ = 5/2,

d2U
(43 + 0.5500 Cra+ 0.2325 G + 0.0191) ~

I

+ (1.50000 a= + 1.4500 G + 0.1838) ~

+ (0.1000 – 6.00000) V2U = O (75)

It follows that every solution of this equation can be rep-
resented as a linear combination of two independent solu-
tions, each of which can be written in the’ form of an in—
finite series in 0, which will converge for ~dl <0.15 *
at Ie&st, a range of convergence which will be sufficient
for most purposes.

33
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Solut-ions U1 (Cr; v), u~(d; v) are chosen so that

Ul(o; v) = o u~(o; v) = 1

u~(o; v) = 1 ‘u~(o; v) =0 }
(7’6)

Thus 1

ai, bi, i = 2, 3, . . . being functions of u.

If the foregoing expressions are substituted into (75) ,
the follow irig sets of eqcat ions a?e obtained

0“.03825a2 + 0.18375 = O
7

.“

.

1*45 - 0.1 V2 + 0.8325aa + 0.11475s3 ~ 0 I
1.5+6 v2+(4- 0.1 va)aa + 1.94625a3 + CJ.2295@ = O’

(~ (78)
● **..

0.019125( n+l)(n+2)an+~ + (n+-l)(0.18375+ 0.235n)an+l

+ (0.9n+ 0.55na-0.1 v2)an +(—na +4.5n—3.5+6va)an-l =0,
I

n = 2, 3, Q, 5,. . , J.— —
‘The asyrn~tbtic behavior of solutions ‘ T!!l and U2 -for

large values of n “can be obtained as follows: If the coeffi-
cient I’ in (lg) is anuroximated by CX-2 (for k = 1.4,

.035) all subsequent formulas become simplsr (e.g., se~
~e;. 3, p.,31). Tn particulait, equation (4-3) of R=f. ~ becomes
HsWe~ + $HH = O, i.e., I(H) = (l-MZ)/p’ = E“, where s is a
certain constant which is not e u 1 to 2
M = 1, H = (). Therefore, if U?n? s L(n) (~~rco~ ~~”’~~.no’
substituted into this equation, ther~ results
~(n) = E(na/(s-2) H) where the functional form of K is .

independent of n. The expression CX-2 apnroxlmates
asymptotically the exact value of l?,
hood of A = 9, ~

since in the. neighbor-
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0.0382532 - 0.1v2 = O

6va + 0.8 Z25b= + 0.11475b3 = O

0.2295b4 + l,94625b3 + b2(4 - 0.1v2) = O
1“

.. -,0,.; ●

0.019125( n+l)(n+2)bn+z+( n+l)(0.18375+0.235?5n)bn+l I

+ (0.9+0.55n2— 0.1v2)hn+(-n2+4.5n-3 .5+6v2)bn_l = O
I

n= 1, 2, 3, Q, 5, ● ● “ .J

.
LQu””tions (78) and (79) then give ai and ‘1 as ;oly—

nomials in U2. Since it is often sufficient to consider
the series (7’7) in a small interval, say, ~al <0.05, it
will suffice to employ only a few terms of this series, and
hence it is necessary to compute only a small number of
bi.

ai~

2. To employ the secoad method mentioned, equation
(73) is Written in the form (setting L = ~/2 as before)

(0.15 + tY)(o.85- JG~G2 + (l*5u + 1.225)9
da

(
-0.1 – 6a”

-u~
)
“u= o (80) ‘

a + 0.15

and two independent solutions Ul(o; v), U=(a; v) are deter-
mined, not by the power series (7’7) but by .~n approximation
method. That is, write

du
=V or

G
Au = ‘vAc (81)

Then

[( 1.50+1.225
Av= - —

(0.15 +u)(0.85-rJ) )V+V2( O“l-’a(0.15 +a)2( 0.86-a) )1
uAU{8Z) ‘
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Assume that ACT is in a small interval, say 0.001, and
that fora=O, u=O ,v=l. If (81) and (82) are em-
ployed, Au(a) and Av(a) may be determined at a = O,
and hence

u(O. 001) = u(0) + Au(o)
(83)

V(o.ool)”= v(0) + Av(0)

from these values of u and v, Au(O.001) and Av(O.001),
and u(O .002), v(O. 002) may be fourid and the entire pro-
cedure continued until an “approximate curve is found for
u(a), o ~g ~().~5c In this manner the desired integration
is performed.

Both methods described above are appropriate for the
purpose’ of computation, but they are insufficient to give ari
insight into the behavior of the particular solutions when
V-+?03.

..
As has been mentioned, there are instances in which the

whole flow is subsonic and therefore it is necessary to.con–
sider particular solutions only for this range, In this
case it is useful to consider certain other expressions
which will be derived in the following. This procedure ie
likewise based on the methoii of separation of variables.
However, instead of employing the variables (q,e) and even-
tually (T,EI) as in the case of equation (71), the variables
(X,6) are employed so that it becomes necessary to consider
equation (18) once again. Function F has the expansion
(26).

Let

$* = Uv Cos Ve (or Uv sin we) (84)

where v now has the meaning

V*
v =_ V* = 0,1,2, , . ●

L’”

(Drop the subscript v to let U = Uv; U will vary,of
course, with the choice of v, even though this is not in-
dicated by the notation. ) Thus , obtain for U the ordinary
differential equation

u II- Vau + 41’U = o (85)
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If F is written in the form given by equation (26), then
as before, two independent

JY?:’;t%;
will be determined.

These will be denoted by two cases must be
distinguished, that is, whether v is or is not an integer.
In the latter case,

where

1+-V

(=)–C=–Cldldjl)=

4+ 2V

. . . . .

(1) (1)
~( 1)=–Gn–cn–ldl –. .•–cl~n-l
n

n ‘+nv

Jd = ~
o

d:2) =_-c ~

l–v

_c2 ~ldj 2)
d$2)= —..

4-2V

.* ..*

(=’)
d(2)= –Cn_Cn_ldl–. . .–Cldn_l
n

n‘-n v

-—

Cn are defined in equation (26) and listed in t-able 2;
while in the former:

p r (3 )e(V+2n)A= dn

n=o



.

The convergence of.these series will be Ucussed. ~1’I ~D~en-
dix IV.

... . . .

In section 17 of reference 3, a mrocedure has been in-
dicated for constructing a mixed flow (that is, a flow
which is partially supersonic) around an obstacle the
boundary of which is a closed curve.

If the boundary curve is nr.escribed, then, probablyl,
in many instances,, no solution of t-he problem exists, and.,
therefore, the problem ariKe”s of finding necsssary and suf-
ficient conditions in order that a (mixed) flo’t pattern
around an obstacle ~xist. In considering this ecluation,
two cases have to be distinguished: Either

1. The behavior of the flow at infinity is completely
prescribed (for examnle, a uniform flow with no vorticity),
or

2. The flow at infinity mossasses certain mrnmerti~s,
but any solution such that its behavior at infinft.y is of
a certain type will be considered as admissible.

—
.-.-

.

The second mroblem is .to determine when the solution is
uniquez and, further, und~r what conditions it is “stall@.”
This situation suggssts considering a mroblem”W’hich mathemati-
cally is much simpler (but still exceedingly difficult),
and, in certain instances,, can give the tyne of ,5qswer tle-
sired by the resear’ch” dngineer, namely, the c!uest-ionwhether

—

lTJnfortunatelYj no definite result,s, in this direction,.
nre known to the. author. ‘ On the other hand, investigations
of problems of similar type seem to indicate that the above
is the case. See, for instance,

—
reference (9).

‘It would be he’cessary to tak~ into account the fact
that solutions with a free boundary can’ exist. See exam-
ples of solutions with a free boundary in incompressible
fluid case given in reference 10. .What occurs when no
continuous solution or a solution with a given free bound-
ary exists, and under what condition a shock wave arises
are not known. (See fig. 6.)

.

.
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Case of ~iry$(reference 11)

.

.

.

(d (b)

Case of Bergman, (reference 10)

. . .
.“-

—..

— ——
-. .o.-

,,

(c)
—

—
. ..

(e)

--

~z= ‘“ ‘“-:
——.

. . .. ..
(d)

_~” , .—— —
.

17igure6.- Examples of different flows with free boundary around the came
A free boundary ie indicated hy . . . .
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to a given hodograph there exists a flow possessing the
prescribed behavior at infinity. Often it will suffice to
know not whether a flow pattern exists around some pre-
scribed (in the physical plane) profile, b’~t only whether
such a flow exists with’ prescribed (or approximately pre-
scribed) velocity distribution. Then the whole investiga--
tion may be shifted to the hodograph plane, and the prob-
lem considered as formulated above. As an example, a flow
around a Joukowski profile will be considered in order to
determine whether to’s hodog~aph similar to that indicated
In figure 7 thare cor.respondh some mixed flow. In the
followlng,sorne necessary conditions for the exfstence of a
flow patbern satisfying certain conditions will be given.

He plane

-

(b) I
Hodograph 17igure7.

lihile, in the case of a subsonic flow, it is more
convenient to operate in the (A,e )-plane ( in the pseudo-
logarithmic plane), In the case of a mixed flow, it is
convenient to return to the (H,6)-planel, since X(?!) be-
comes imagina~y for M>l.

As A and Ii are connected by the relation

d~ =
dH = 1-M2

it does not present any theoret-
~l(H) ‘ ‘(H) ~’ -

ical difficulty to r~place the variable A by the variable
H, in functions sk(~jet~oteo)t k= 1,213, which represent

a pseudo vortex, and two pseudo doublets, respectively.
Thus , functions are obtained which shall be denoted by

Tk(Ii,(3:Ho,eo)= sk(~,e:hoe~) (88)

‘Here, H is employed in the sense of equation (32).

ho

,

.-

f
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It is now as’sumed that at the Toint (HO, BO) (which is the
. image of the point at infintty in the physical plane) the

function behaves like

A1T1(H,f3:EIOteO )+AaTz(H,6; Ho, eo)+A3T3(H, e;Ho@o)+R(H, e ) (89)

where R(II,e) is a regular function of H,O. (Naturally,
A1) A2, A-3 must satisfy” the conditions indicated in -sec-

tion 14 of reference 3 in onder that ~n the ~hysical plane a
flew around a closed curve is obtained.) Now, the question
arises whether or not a function R(H,e) can be found
such that the expression (89) vanishes on the boundary line
of the hodograph. (See reference 5.)

.

.

.

.

Remark: It is not imrned.iacely apparen~ that T3tH,e;Ho, f@
is a single-valued function; however, it is possible to urove
that this is always the case. The assumption is now made
that the stream function $ Can’he approximated in ~= by -
Chaplygin’s solutions

~P (Ii) A cosv8+Bvsinve + QV(H) Cvcostie+Dvsinve
f[ L“ v 1 [ 1} ’90’Fl

.

.

(a) / (b)
I

Figure 8,
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A system of functions will now be constructed which, as
will be shown, possesses the property that every function
which is regular in HI can be approximated by a conven-
iently chosen combination of these functicns, As has been
proved in ap~endix I, every solution of (18) can be repre-
sented in HL in the form

R(H,e) = Re[P( g)]
(91)

P(g)=L ‘O)g(Z) +L(L)g[~]( Z)+. . ., Z = A(H)+i6

(see equation (30)) where g(Z) is a conveniently chogen
analytic function of a Complex variable. Let El le the -
image of & in the (A,6 )-plane, and let ~(A+i9) he that
function which maps al into the unit circle (see fig, 8)

W(H,fl)=tiLA( H)+ ie] (92)

maps El into the unit circle. Every regular ’analytic
function g(x+ie) of a complex variable A+iQ can be
represented in QI in the form

Setting
V=o

R2n(II,e) =
{

R P@(L(H)+i6)]~
J

1

(93)

R2n+1(H,8) = Im~[Wn(A(H)+iO )])

a system of functions is obtained such that every function
~ can be developed (and therefore approximated) in Xl, by
a series of such functions.

Remark: The classical theorem of Runge on approximation (IL’——
analytic functions states that an analytic function can be
approximated by a polynomial in a simply connected domain,
while, here, an approximation on the boundary also is needed,

This difficulty can, however, he overcome in a manner
similar to that described in reference 1?. Since $“ s4tis-
f.ies in I& the linear partial differential eauatinn

.

.

*.42
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A@b + 4~* = O, the function O*(W) in the W-mlane also
satisfies an equation of the same tl=pe. How , in reference 12,
it is proved that to every solution V*(H), which iS” ‘
continuous in the closed domain, another solution W* of.
the same equation can be determined w~ich is regular in the
closed domain, and such that I*+ - ~l~c, where 6>0
can be chosen arbitrarily small.

The fact that the domain El goes to infinity does
not cause any difficulty, since the function $* for -k
sufficiently large is arbitrarily small and the domazn El
can be replaced by a bounded domain, assuming that the
line-––– is part of the loundary curve. (See fig. 9.)

I
——

7 f
e

I
I l’ *A -

[“iL-- 1 I -1’i&uro9.

As5uma, now, that the reauired function exists. By
the assumptions which hare been made and the foregoing
considerations Ei(l$;e) may be approximated in ~1 by

N

~ au~(H, e) and the

M

entire term (89) in & by
L ‘--

~~(H,9).

V=l
—

v=

, Therefore,

.

i..

N 3

f[~

M

I
ai- avRv(H,e) +

E
AVTV –

.1
bvCv(H,O) ds

k= v–l V=l, V=l
N a“

/{ [~

3 M
a

+“
E

avRv(H,e) +
I

AVTV –
1.

: .1}]bvCv(H,f3) dS =0 (94)

“k V=l V=l V=l
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Remark: Note that av = al,(N) and bv = bv(N) will, in

general, depend on N, al~hough this is not indicated in
the notation.

From the preceding it is then possible to conclude
that :

~v(~,e; ~oje~), u = 1,2,3 denote functions with

singu~~rities at (Ho, eo) (see (gg)), and Rv(H, @), U =

1,2,3 are particular solutions of (1~) which are defingd
by (91) and (93) in the domain L, and , finally, cv(E,e),

v =1,2, 3,. . . are the Chanlygin solutions which are obtained
by replacing T in (71) Ly T = T(H) and annlying tihe
method of separation of variables, then, a necessary con-
dition for the existence of a flow the hodograDh H of
which is prescribed and which satisfies the hypotheses
previously indicated is that for M and N s fficientl~
large, and for conveniently chosen av (= au (N~) and

bu(= bv( N)), the expression on the left-h~nd. side of (?4)

(omitting the limit signs, of course) can be made arbi-
trarily sniall.

,

.

CONCLUDING REMARKS

The treatment of two-dimensional irrotational motion of
a compressible flqid, developed in this and preceding publi-
cations (references 1 through 5), can be considered as a
direct generalization of the classical methods employed in
the incompressible case.

In the present paper, a representation for a at-ream
function of a compressible fluid..flow in terms of an arbi–
trary analytic function (which had been previously derived)
has been considerably improved. An analogous formula for
the stream function of a euprrsonic flow in terms of two
arbitrary, twice differentiable functions of a real variable
is also obtained. A method is developed for extending a
subsonic flow defined in a portion of the plane into a
larger domain. In some instances this process will lead to
partially supersonic flows.

The procedures described for determining floy’p,atterns .
of a compressible fluid require, as a rule, long cotiputations
which necessitate the use of modern computational devices.

.
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Ori the other hand, the eauation, (24), for the stream
function is linear, and. therefore the principie of super-
pOsitiOn of solutions aay be applied. This fact suggests ‘
preparing an ‘;atlc.snof flow -patterns, which should include
stream functions ~U(v, e), v = 1, 2, . , . , n of a num-

ber of basic flows (say, a flow around an obstacle of ellip–
tlcal shape} etc.) as well as a number of sinple solutions
VW(T, ~),’w=l; 2, 3, ● . ● , . of the compressibility

c1

equation (18). Every combination @v + ~ ~~ww) wher e

p=l

% are constants, ~epresents the stream function of a pos-

sible flow. By using some auxiliary tables (see reference
5) and conveniently changing the CLWIS, an engineer will

be able, comparati-rely quickly, to ~ary ever7 llbasic[lflow
mentioned above, 60 as to obtain flows approximately, at
least of the form desired. This procedure can be applied
for supersonic, as well as for mixe~ flows.

Two-dimensional irrotational motion is only a rough
approximation to the actual situation, since most flows are
three-dimensional, and friction, turbulence, and so forth,
influence the motion.

By the hydraulic hypothesis (eee reference 15, p. 84)
turbulence can, ho-wever, in many instances be disregarded.
Further two-dimensional solutions can, in the axially sym-
metlfc case, be considered as a first approximation and
used in order to obtain better approximate solutions of the
three-dimensional problem, By using the two—dimensional
solution, determining the density p = PO, an-d replacing ‘-

P by p. in the equations V(p;>) = 0, ~x~. O (for

the thre~-dimensional case) the above system is reduced tO

a linear one, V(pol)= o, Vx;.o. A solution (Y,1 M

of the linearize% system in which 71 satisfies the re-
quired boundary conditions can be considered as a second

.

approximation for the three-dimensional case.

‘In certain cases it would be advisable to use for VW

‘he ‘unctions xj.L introduced in reference 5.
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The use of certain tables which need be prepared only
once will greatly facilitate the work,

The nonaxially symmetric case may be treated by com-
bining the method described above with certain operational
processes developed by the author for generating three-
dimensional vectors satisfying

and Vx;=o

3y employing a procedure similar to the one given
above, the boundary layer may be taken into account,

Brown University,
Providence, R. I., October 1945,
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APPENDIX I

PROOF OF A 3’UNDAMENT.LL THEOREM ON SUBS ONIO FLOWS

In the previous reports of the_ author the basic
theorem on which the entire method was de;elopet wa~; -—

2kwmem 1: Let 3’*(ZA) be an analytic funct~on of a
real variable A, defined for -ca<a~k~-~<Ci, which
possesses the property that

dK~ *

I
~

c(K + 1)!
for a~x~-c, K=0,1,2, . . . (95)

; dAK (6 – A)K+2 ‘

where c is a suitably chosen constant.

Further, let Q(n)( 2A), n= 1, 2, . . . denote a set
of functions which are defined by the recurrence relations

(2n+ l)Q~(n+L)+QkL( n)+ ~~*Q(n) =0, n=l ,2... (96)

Q(n)(a)’ = c), -m<~<o

Finally, let g(~) be an analytic function regular in
a domain B, which contains the origin. Then

I$*(A,e) = Im {~(z)+E:::::Q(n)(2A)g[n](z)l“7)
n=z

.

.

.

do

g
[o](z) = g(z)
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will be a solution of

.,

.

which solution will he defined in evsry simnly connect+d
domain lying i,n.the intersection of B and H, where H
denot=s the domain ~as As-c, e’<3A’3.

This theorem was not, however, mroved.for the F of
(19), but was proved for Fm, where I?m was a polynomial

in e2A ‘which approximated F in the interval (-~,Ao).
Ao<o to a previously specifi~d depree of closeness; and
it was further shown that these Fm satisfied relation

(95) as well ‘as the other hypotheses of the theorem.

In the folloWing, it will be shown that the F of
(19) actually satisfies the hy~othese of the theorem in
the case where a 2 -m. .,

In order to prove theorem I for the F of (19), it is
necessary to show that

2wxu2m& To every interval

there exists a constant c = c(a, -E)< ca such that t-he
function Y of (19) satisfies the inequality (95).

The main idea of the proof described below consists in
showing that F, when continued in the complex domain,
that is, l?(z), z = Al + iA2, is an analytic function of
the complex variable Z, which function is regular in every
circle

.
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Function J?(T) is a rational function of T the only

singularity of whi~h (for finite values of T) is a pole
at!i!=o. Therefore, in order to prove that F is a regu–
lar function of Z in the domalnl

D =E[-m-<a~ReZS-~ CO, -m< 2nk~ Im Z S 2mk< co]

it suffices to prove that !!? is a regular fu ction. of z.
in D and does not vanish there. zLet X = e . Then as Z
varies in D, X varies in the domain

with ,C= exp (’a) and r = e.xp(-q).

Instead of considering _...* -

x== (l+hT1/h

)
h

r

k–1=
1 + T l-h y k+l’

k>l (100)

it will be found convenient to perform the substitution

s = 1-T .(101)

All the above–mentioned ccjnsiderations remain unaltered
by the ohange of argument T of (100) except that it ~ow
becone”s necessary to prove that s is distinct from 1 in D,

By substituting T = 1 - s in (100) the following for-
mula for X is obtained:

s

[

h– 1

x=— h‘1 + 1— s

2– S h–l– 1 + S 1
( 102)

Unless h–z is a rational number, X will be an in–
finitely many valued function of s. In the following dis–
cuss ion, only that branch of the function X will be con—”
sidered which has the property that

Im
{[
log h‘1 + 1— s

II
Lo~— 1 –.1+ s * = ~ J

(103)

lJJ
[ ] denotes the domain defined such that the co– ‘“-

ordinates of the points belonging to this domain satisfy the
conditions given in the interior of the brackets.
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This branch is uniquely determine& within a circle of
radius ~-l - ~, for the branch point nearest the origin
occurs at s = 1 - h-z. In the following, ly x(s) will
always be denoted the lranch of x(s) described above, un-
less the contrary be specified.

Since x(s) is regular at the origin it can be devel-
oped in a power series

w

x(s) = 7 a.nsn Fl,#o
n-iii

(104)

Now, as al # O, the inverse function s(x) is regular at
x= O and can be represented there in the form of a mower
serfes

Ca
~

s(x) = L bnxn (105)
n= 1

It will be shown that s(x) is a regular function of
X for 1X1< 1 and therefmre hy a classical theorem of
analysis, the power series (105) converges for 1X1< 1.

Lemma : The function G = s(x), which is the inverse
of the %ran~h of the function X = X(s) of (192), which
satisfies condition (103), is regular in the unit circle.

Therefore,
=x~anded .s!~t~ 1

at every point inside the circle
the power series can be inverted and Is! .
power series in X - Xo, where X. = X(So):

s = so + h(so)(x - Xo) -I-. . . (106)

.

It is now necessary to prove that the inversion ahnut
converges throughout the interior of the circle

;x~ : 1. Two independent proofs of this fact will be Pre-
sented.

.

“
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A. Determine the values of a at which the inversion
of x(s) may becone impossible. ~hese pofnte are at s = .1,

2, -ljh, -.*+ l* L.+1,
h

and s = m, the corresponding
. .

values of IX{ being l,m,cO, O, and 1, respectively.
Since only that branch of s(x) for which s(o) = o, not

s(o) = 1 + ~, is to be considered, it follows that the
h

function s(x) determined by the inversion of the specified
branch as ~power series ~~1 = 1. There-X(S) iS regular in~ide the circle

. x will
~~~;e;~~ ~~~an~~~n<o~, efor as has just been shown by the
foregoing reasoning, for no value of X inside the unit
circle can s(x) be singular.

B. Clearly, X(s) = O at s = O “but nowhere else in-
side or on the circle is!,= 1. in particular, cn the ci.r-

::;ue Ij = 1 it is not difficult to chow that the minimum
1X1 is 1. Hecce, hy the theorem on page 136 of

reference 13 and the proof presented there it follows that,
since dX/ds does not vanish at s = 0, s can he expanded
as a power series in X convergent within the circle
1X1 =1.

Since X=ez and since it has been shown that s is
an analytic function of X in [Xl < 1, it follows that
s Is an analytic function of Z for Re(Z).c O.

Finally, to prove that e
(andlhencw that T # 0),

cannot be equal to 1 in D

Then by equation (1)as~um~x~h~ ;~qt~~~y~he~~;;~g’
;e7Z)”= O, But , for all Z in D the real part of Z is
negative . Therefore ‘1 is distinct from zero throughout
D, and thus 3’ is a regular function of z in D.

As has bsen indicated in section II, the proof of the
validity of the representation (24) for le~ c-ho, A==o,
has been given under the assumption that the quantity a, ‘“

for which Q(n)(a) = 0, is larger than -~,

In the following the proof for the excluded case a = -CO
will be presented. The proof is essentially based on the
following corollary to the theorem, equation (99).

Corolla=: To every positive number p<l and every

negative numbez X(o) there existe a number
that

c(p, A~o)) such

51



NACA TN No, 1096
.

Id..? .C&_&_LLLfor~<
#o)

a’ = (-~pjK+~

—.----K= 0,1 ,2,. . .
s-p’

z
n

Proof: Let G(Z) =/ F(~)d~, Z= Az+ iha. As has

been shown above (see also pt. II of sec. 15 of reference 3
and appendix I of reference 5), F(Z) can be represented for
?lI<o in the form of the following series:

m

‘YI’(z) = ‘J ojne2nz
n=l

(The constant term vaniehes since F’(-m) = O,) Therefore
(justifying term-by-term inte ration by the usual-argument
involving uniform convergence ~ G(Z) may be expressed in the
form:

Having chosen -JO), it follows from the last equation that

A(A(0)) ~uch that for ‘there exl.st8 ~ constant,

Al = ReZ~ A(o), .-.. ---

Now consfder any real h such that A < A (0)/(1 - p).

(It is understood that A(O) and p are held fixed during
the present discussion.) Draw a circle c with center at
Z=A and with radius (-pA): this circle lies entirely to
the left of the line Al = ~(o), According to the Cauchy

integral formula:

5la

.
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By setting Z = A - phei~, 05!D52Tr, the last equation
becomes:

all

(-)dKF = (K+ l)!
r

(--pA)G(A - p~elo)ei6 ~

dZK z=h 21-r Jo (-pAei@)K+a

Now:

and

(-pA)G(A - PA ef@)l ~ l(-pA)A(A( 0))e2Re(A-P~ei?)l

Since, for
.

05@52m, Re(A - pAei@) ~ A(I - P),

there is obtained the inequality:

1(-pA)G(A - pAei@)l s (-pA)A(A (o))e2A(l-p)

Since A < A(c’)/(1 - p), it is apparent that there exists a

C(p,A(o)) such that the right-hand side.of the lastconstant
inequality is less than c for all A. Therefore, from the
second form of the Cauchy formula given above, there results:

l-ld.KF
~(o)

< C(P. )(K + 1)! ~< ~(o)

dZ
K=

Z=A (-PA)K+a ‘ l-p

which yields the statement of the corollary.

Now, given any A<o, let A(o) be chosen as follows:

A(o) < 0 and p positive but less than one such that

A < +’)/(1 - p), and then the corresponding number c(p, AW, ‘
has to be determined.

5lb
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I’urther, the dominants Q(n) have to be defined by

and the recursion fornula
A

rather than byi (94) of reference 30

~(n)
Now it will be show? that there
such that:

Q(n)(-m) =0, n=l,2,. , .

exist a set of constants

.

.

.

Proof:
.

This equation is seen to hold for
Jl) ‘—”

11=1 with

= 4C. Suppose the theorem holds for n = no. Then:

-m

By carrying out the integration, there results:

r(2no + l)i@o+2) = (-pA)nc’+E -p C(nO)(XIo + 1) .I-
4C C(no)

L p no 1

By letting

~(no+l) = p c
(no)

(no+ l)+4cc
(no)

/P no

(2no + 1)

it is sesn that the induction is complete, and the statement
made above is estahlishod.

‘It should be remarked that in formula (94) there is a

misprint : (-h)-n should be replaced by (-a)-n.

.

.

5lC

?
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If the last equation on both sides is divided by c(no)

the following fornula is obtained for the ratio of $uccessiv;
coefficients:

(no+l)
c p(no + 1) + 4c/p no

,. =—
C(no)

2no + 1

By letting no ~ CSt the result obtained
subscript on no):

~(n+3) ~ p

n?~m~=~

from which the convergence of the series

(see (97) of reference 3) is assured for

02< 3Aa.

is (dropping the

Y.

CQ

.

.

5id
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APPEND IX II

THE EVALUATION Ol? THE Q(n) ‘S AND THEIR DERIVATIVES

In appendix 1$ it has been shown that operator (24),
when applied to a function g which is analytic in a
domain B, generates a solution of (18), which is defined
in that simply connected subdomain of B, the coordinates
of which satisfy the relation

e<~lhl ?b<o

In this fashion, possible stream functions in the (?b,ll)-
plane.of a compressible fluid have been formed.

However , it is necessary to evaiuate the functions
Q(n), deflneil Iy {137), in order to SFp2y ciperator (24)
in practice, a~d in reference 3 this has been done for
Q(l), Q( 2), Q(3), ~zfl @o Often, a t;reater num?sr of

Q’s is required, a~ii for this reas3n, iu this appe~dix

Q(n), n = 1, 2, . . ., 8 are computed.

A~ IV I..aaoeeh shown on pp. sl.-.~ld, Y as defin~d by
(19) does actually satisfy the co djtions of theorem I of
appendix 1, when a = -CO. ?The Q n)l~ can be determined as
follows :

(2n+.L)QA(n+l”) (n)
* Qkk + 4F ~(n) s o (107)

q(l) =
-4

Y
r d.A

-m
Q(n)(a) = O, n= 1 ,2,. * *

If equation (20) be differentiated, it m~y be easily
seen that

dh ‘ –5!!?2— =—

d.T (T2_~)(~2_~)

so that if F be given its value In equation (19),

52
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T*:1
x (

_5T2

)
dT

(~a–l)(T2-6)

6+T
=

(~_, )
-0.50 T-+0.35 T–~-2.40T+l .44+1.28 log _— (109)1

?Note that there is a misprfnt in formula (107) for
Q(l) given in ret’=rence $; f r general k,

Y
the correct

formulas for Q(IJ and @ are:

[

(l+k) (l-3k)Q(l) .— T+- T-’-~3-3 -I- 4
8 k–1 k+ 1 3 h(k+l)=(k–l)

T
hT+l

Xlog —
1

(109a)
–hT+l T=~

Q(”)=_ 1 I(k+l)a (3k-1)2 T3 _ (6&+28 k2-581c+16) T

2048 (k-1) 3 (k–1)

+ (41k4+96k”+18k?-112k-91 ) (k–1) T-l

(k+l)3

_ (44k3+192k2+236k+ 80)( k+l) TA_ (39k2–80k-115)( k–1) ~_5

3( k+l)2 5(k+l)

25( ~2_l )~-s_ .l,~k(k-1) T-7 _—
3

1/h-’J?
A

1

T
64h

+ log —
(k-1)’(k+l)’ l/h+T T=~

(lo9b)
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From (1 CJ7), for n = 1, it may be seen that

,A

=—
.] (-4~-Q(’)dQ(’)dk

~) d~ ‘f@+;Q(l )2)
-03 -m

(110)

Therefore

In(10’7), set n=2 to obtain

(112)

and if this ye integrated from --CO to AS the following
expressions are obtained

f

A

5Q(3) = -Q;%) _ 4 17Q(2)dh

-m

(113)

If @ is given its value in (1G9 ), (113) upon in-
tegrating the last term assumes the form

T

Q(3) = - ;Q\2) + &( Q(L))3_~
/

‘ti~dT
15.

El

-0.2000Q~ 2)+0.0111(Q ( 1) ~ +0.0256 &–0.1152T+0 .2194+ 0.0452~z=

-o,1575!r
-9 V’=-T (114)‘3+0. 0376T ‘5+0. 0420T-7-0.0200T +0.0886 log —

J_5+T

.

.

.
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Remark: Q!=) and QA(L~ can also be expressed in closed

form as functions cf T.

If n is set equal to 3 in (107), then

and if (-43’) is replaced by @ and the indicated inte-

gration by parts perforaed, then the formula

.

/

‘A ~(z)qf)dk .,
7Q(4) = -Q~) + Q( dQ(3) - (115)

%-cu

(3)
is obtained. Now, insert for Q)k the expression

obtained by setting n = 2 in (107). This yields

(116)

In order to evaluate the first integral, two successive ._
partial integrations are performed: nanely,
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Insert this expression into (116) and employ (107) for

n = 1: namely, -5 Qk
a) =

Q!;) + 4FQ( 1), to obtain

Remark: By using the Trevious results, (118) may le ex-
~~~~d in a closed form as a function of T.

It has not as yet proved possible to e.press Q(n)

n>st only in terms of the preceding Q(&s and their

derivatives, which formulas would yield for Q(n), n>5,

closed expressions in ~. con eacently, it has been n~ces–
eary to derive formulzs for /’Qn~, n = 5, 6, 7, 8 in terms

of the preceding Q(n)ls and their derivatives but which
also include one integration. Whus , a fornal computation
leads to the following

T

Q(5) = 1 (4)_:-gQ~
f

I’Q(4)~dT (119)

“1
m

Q(e) s _ 1 (5) +~Qh &Q
(l)Q(SI 1

f
Q( 1)Q(5)~~dT (120)

-iiz

T

+&
[

Q\5)Q(2 ) ~ IIT (121)
.
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@=-+Q~7)+AQ(1)Q( 7)+& Q(1) QA(6)
15 195

In order to evaluate the expressions obtained for the

Q(n)ls, not only the prece~ing Q(n) must be known .as
functions of T, but their derivatives and the derivatives
of I’ must be known as well,

The following talles supply scme of the needed deriv-
atives. Observe that

(EI) = asQ(m) mQA~ =1,2,. . .
(123)

a).s s s=o,~,. . .

for S = O, (El)aQ(~) = Q.
k

In table 5, typical functions necess&ry for the ex—
plicit evaluation of the Q’s have l?ean tabulated.
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Table

Derivatives of Q(n) of Sth order

$F+$(Q(1))2

+~Fh-~FQ (1)

~F -.4FQ(1)+16F2
3h23h T

~F - ~ F Q(l) + 16FhF
3 AZ 3 A2

4F 4FQ(1)+64FF+
3A4-3~3 3 AZ

4F 4 F Q(l) + ~ FA3F +
z X5 -ZA4

4F -4F
3 A6 3 ~5Q

(1)+ 32FA4F+80FA3F~

,’
.

1 ‘(2)
-3Qh

-;

(2)
- &Qh3

J
h

(1))3_ ~ F2dk+ &(Q
-M

-~Q(:)-_
(2) (2)4(Q(2)F + 2QJ FA + Q

5A 5 ~2 ‘A2)
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‘-1 (2) ?@1 ~(:~. g *(Q
-EF

-$ Qf’)+ Q(3;Q(1)+ & Q~)Q(’)+ & Q(2)F- #Q(2z

f

>
1 (5)+ * Q(5)Q(l)_ & ~-~QA Q(@Q(l)d~

-co

- & Q:; - # :(5)F

(5)
- & QAS+l - A ,~(Q(5)’)

(6)+ & Q(6) Q(1)+ & Qf)Q(l)-&Qk

s

A

(5)(Q(1))2 + ~ Q~)Q(2)d~
-E’i?3Q -co

1 (6) - & Q(6)F
-BQ~2

(6) _&$
- & QAS+l

‘-1 (Q(6)F)

aAs-l

1 (7)+ & Q(7)QW+ ~ Q~)Q(l)
-EQh - &Q(6) (Q(l)Y

J

h
+1 Qf’) Q(2) ~>

i%

-&

1 (7) ‘-1 (7)F)
- ~ ‘*S+l - &- +(Q
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Table

The Values of F as a Function of T

F= -0.12T2 + 0.51
-y-y+y

F> = 0.048T3 - 0.336T + ~ + 0~084+ 3“564 + ~~4+ 3-240
~~T~

F -0.0288T4 + 0.2688T2 - 0.6024 + w+
h2 = @

y

- ?+ 93”895- PULX& 34.99
T8 *

FA3 = +0,0230T5 - 0.2688T3+ 0.8909T - -+ Y.V

-0.0230T6 + 0.3226T4 -
‘AA =

1.4454T2 + 2.0993 + =
T2

+ 64724 30094 * 9069.9-——
T14 T16 T18

F = (0.0276T7 -
A5

0.4515T5 + 2,5503T3 - 5.5954T + 3,4356T-1

-59.495T-3 + 1672.4T-5 - 21263T-7 + 147246T-9 - 598241T-11

+1472885T-13 - 221~474T-15 + 1973284-17 - 959960T-19

+195910T-21)

F = (-0.0387T8+ 0.7225T6- 4.9235T4 + 14.540T2 - 0.2690T~6

‘1 -30.572T
-2 -3-17.522 + 3.7520T - 16.348T + 1909.9T-4

+22.512T-5 - 41666T-6 - 9.6~80T-7 + 483449T-8

-3350057T-10 + 14632715T-12 - 41337762T-14 + 76127168T-16

-90418589T-18 + 66612802T-20 - 27646870T-22 + 4Q36939T-24)

,,

.

60



NACA TN NO. 1096

APP?3NDIX III
.

PROOF 0)? A FUNDAMENTAL THEOREM ON SUPERSONIC FLOWS;

E(n)EVALUATION 03’ THE _

The following theorem was enunciated without proof in
section III:

Let

where Q(c) ($2 is considered as continued for complex
values of the arguments) is an a~~lytic function of the
complex variable
for 1~[ ~ A; th~:

which function is supposed regular
there gxist~ a set of functions

E(n)(A), n =1,2, . ..A= M (49)
2

such that

V(t,7)) = Vl(g ,n) + V2(E ,m)

is a solution of (48) where

‘Y
m E(q~)f~nl(g)

~l(f,n)= f(t)+

n~l

al

v2(t,71) = dn)+
I

zqh)gc~ (n)

and
n= 1

gqq) = g(n)f[OJ(~) = f(g)

(50)

1., (51)
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.

f and g being two arbitrary, twice differentiable func–
tions of ~ and n, respectively. . .

-.

The following is a proof of this theorem. Substitute
(50) and (51) and (52) into (48) to obtain

1 1[ 1[
‘dd + f(t) E(;)+sXA) + J’](TI) + fc’l(t)

1

[EpKE~/+f2(*)E%) + : ““ + p=] (q,+ f~n~(,,]
1

.,
L L

[
~y+ I )+ ~(A:/

1
+S2(A)E(n )(A) + . . . = O (124)

Thus , if the Z(m), m = 1,2, , . . are determines by the,
recurrence relation

A

~(l)(~) = _ r $2(Al)dAl
!-

.11”

1

(125)

E(n+z )(A) =

-r
(n)(Al)+Q(AI)~ ‘n)(AJdAz

E AA
!’o

Then (50) will formally satisfy (48). The uniform con–
ver.gence of this series will be proved by the method of
dominznts .

Lemma: Let ~C) be an analytic function of the com-
plex varia%le ~, which is regulai “in“the ‘circle”” Icl < &;
then,

2MAoa

no”- L12 ““

1

(126)

O~[<ko, i.e.,
dn~( c) < 2n!M A. 2(n+l)!MAo2

d ~n
- w’1’0 - qn+’ ‘ ‘::;G:: ‘12’)

wher e

M = max f( ~) for Itl o=A (128)

.

.

The proof of this lemma follows immediately from Cauchyls
formula
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f

d Cl)dtlS2U)=J-- ——
2ni . “cl-c

and the fact that

(129)

IIA->1 for ~ real and” (130)
~~- K – positive

—.

In the following ~ will be considered only for real
non-n egat ive values of c; that is, n will be taken as
a function of A; O< A.< ~c. !?his restriction on L will
be understood for th~ remainder of the proof unless the
contrary be stated.

Let

ii(A) = 2MtLo2
(AO-A )3

Equations (126), (127) may then be written in the
form

(131)

(132)

(133)

respectively. By definition, if (132) and (133) hold, S
~s a doninant of -Cl, which fact will be symbolized by
n>>n or $2<< $2.

~(l~(L) is given byIf

A

&(l)(A) =

f
fi(Al)dAz (134) ‘-

“o

Then

A A

f

-(O(A)#)(A)l = f *(A1)~l
~. fi(AJdAl~ E (135)

“o o
and also
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Thus

(136)

(137)-@(A)<< fi(l )(A)

Sup-pose, now, that

A

~(n+l )(A) =
11 1

‘(n)(A) (138)‘(n)(Al) dAl + H--
fifi)(A~) + fi(A)E

“o

where

E( -(n)
‘)<< E (139)

o<< @ (140)

Then , it follows immediately that

1-~(n+l)(A)<~(n+-l)(A) (141)

d~(n+l)(A) < d~(n+l)(A)—.—.
dA - dA

(142)

and by considering the corresponding derivatives of
- n) --(n)
E\L -I-S2E in comparison with ‘) +~E(-( E~A ‘)) it fol-

10WS that:

which completes the proof by induction.

If , now, fi(n) is given by

;(n) = cnA.02M
[

1 1

1
>> 0

“A. AO- A-G
(144)

.

.
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where is some conveniently chosen positive constant ‘
(to be ~~terrnined
be obtained for fiti~~~]”

Then an explicit expression may
v

It is then seen that

i.

(145)

(146)

to obtain the recurrence relations holding between the cm s
write

A
~(n+l)(A) =f( (n+l)n &a MCn +—

.“0 (Ao– L1)n+= (Lo– Ll)n+2”

.-- .-.-—

Aoa B,.

)

dlkl + ?$n)(A) (lqy)

(AO - l)2J’#

and employ (144), so that

[n(n+l)+AlaM]
‘n+ 1 = Cn

(n+l)”
(148)

Note that ““

Cn < M*(ll+l) (149)

where M* is some conveniently chosen constant.

To complete the proof for the uniform convergence of
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vl(~,~): f(g) is assumed to he a differentiable function
and therefore there exists a constant, Gay, M2, such
that

(150)

(151)

Consequently, from (51) it maybe seen that

[
vl(t,71)<~~2 1+

21flM*2! 2i~1 ‘M*(n+l)!+ . . ,
+ * . .+

1
(152)

(A. -~) n!(Ao -A)n

which will converge if

(153)

so that the series ~l(t,n) converges uniformly in the
domain (153). The sahe may be said for the sbries
a2V1/i35ho; hence the se”iies for VZ(~,q) may he differen–
tiated termwise and therefore the formal solution (50) is
actually a solution of (48) in the domain (153).

The same also holds for va(~,~), but here the domain
(153) has to be replaced by

ITI
——<1 (154)
[A. - At

Therefore V(t,n) represents a solution of (48) in the in-
tersection of’ (15~ and (154). (See fig. 10.) As has been
pointed out in section 111, this theorem cannot be applied
diremtly to equation (47) as 3’1
for

given by (45) has a pole
A=O. In some cases , however, it is possible to over-

come this difficulty by shifting the origin. Let a be a
positive number and

T*=ll - a/2 Jso that A* will mean

(155)

.

.

.-

t

.

.
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.

.

.

A*” A-~

Equation (47) then a~s~xe~ the form

where

( )w(g*, n*) =v. t*+;, n* +;

F2(A*) = I’l(A* + a)

(156)

(157)

1“(168)

so that F~ is analytic for A* = 0.

The corresponding changes in E(n)(A) will be indi-

te,cated by writing _ thus
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The domain of convergence is merely shifted.

It is desirable to have expilcit formulas for the

E(n) and their derivatives, as these will. be employed in
computation; if n is given the values n = 1,2,3,4, in
(159) , then

f“
A

j@)(A) =_ ~l(Al)d&~

‘a

E(2)(A) l(#h A))2= ~l(A) - ~l(a) + ~_

(160)

(161)

d3)(A) bE(3)(a) + ~(1)Q(4)(A) = _
(
.’= . .’~

)
(A) E(3)(A)

aA bA – -

m%),+ 1, g{ ‘)(A) ‘bA _-(F/.(A)- F12(a))

1( E(1)(*) )2g(2) +~(g(1)(A))4 .._____ _ _ ..
-Zi–

where

.

.

(163)

(164)

(165)
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aJ@(A)

aA ‘–
F@=)(A)-a:; :A) ,“.... . .

ad4 )(A) s _ Fl(f@3)(A) +
a3F1(A) - b2FJA )&)(A)

M aA3 aAa

aFl(A)z( 2)(A) 3a~l(fk)’ #)(A)
+— + —— l?l(A)+Fl (167)

aA ?IA aA

Explicit formulas for some of these quantities as a func—
tion of B are given below; YI(B) is defined in (45);
B(a) is the value of B corresponding to A = a.

E(’)(A) = ~ [; B-3 + a B-’
(1–3k) ~

(k+l) {k-l)

8

1

B
— tan-l hB (168)

h(k+l)2(k–1) B(a)

arl(fi) k+1

( )[
=.— 30(k+l)B-7+48kB ‘6+2( 6k-14)B-3+2(3k—l)B

a~ 128 1

.

.

[

(l+h EB2)(l+B2)
x

1
(1E9)

B2( l–hz)
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.

A

f

k+1
F12(LZ)dAl = —

[
– :-(k+l)a - 10k(k+l)B-’

1024●

a
A

(39 ka- 5ok-15) B-5 + 4(llk3+4~E@+ 59k+20) B-3—-
5 3(k+l)

_ (S1–70k–151.k2+52 k3+133k4-14kG-41ke ) ~-l

(k+l)2( k-1)2

+ (_l-3_k)(16+6k–12k’-2k3)
B.

(k-l) 2

+ (k+l)(l–zk)% 1.28

1

B
B3 + tan-l hll (170)

3(k–1) h(k+l)3(k–l)Z B(a)

Remark? Sometimes the range of variability of the speed is——
comparatively small.. I“n these instances it is useful to
replace Y by a constant, say J’o. Equation (43) then
becomes

t)2V
--— -+ X’ov = o
ataq

and its solutions can be written in the form

.

.

—.—

where f &nd g are two arbftrary, twice continuously
differentiable functioris of one variable.

)

w
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APPENDIX IV

.

.

.

.

CONVERGENCE 03’THE SERIES OBTAINED AS SOLUTIoNs oF (85).

The convergence of-the series (86) or (87), which have
be’en obtained as solutions of”(85) may be demonstrated as
follows:

Let

,..’

‘jj!<h~~f,~lane~e(A)< o
then corresponds to the circle

.Since ,,

dU dU dz
= 2e

2A dU
= 2z~

ZC=G; z

a“nd
I

(1’72).-

the differential eauat ion (85) may be written in the form

Z= daU
+Z%

– ,dz+(y-f)udza
(173)

2 I

Since 3 -~ 2his a polynomial .in z = e , the point
4

0 is a regular singular point of. the differential equa–
;i;n (17’3). See reference 14, where it is als.~ shti~n-(in
sec. 10.13) that the general so”lution of (173) may be ex-
pressed in the following form, provided - U’ is not an in– -
te.ger.

u= c~u~ -i-C2U2 (17’4)

where c1 and ca are arbitrary constants and

?1
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Ul=z ““’a{l + ~ a..’}
n=1

,
(175)’

where the
an’ ‘? S::;u?::p;:i:tc::s::u:::::a?iti ) ::n:;the only (finite

2=0, the theory presented in reference 14-, section 10.13,
shows that the series converges for all values of -z.

However, if v is an integer, as in the case under
consideration, the above-mentioned method fails; the ser-
ies (1’74) may be retafncd, but, as shown in section 10,15
of reference 14, the series (176) must be replaced by

where the Yv are -properly chosen constants. Therefore,
in the case under consideration,
(173) valid, for all z,

the general solution of
will be of the form:

u= Czul + C2U2* (178)

It Is seen that, by replacing z by eah
(175) and

(177) will assume the forms given in (87); the’ factor h
in the first term of the second series of (87) arises from
the logarithmic term in (177),

Since the expansions (175) and (177) are valid for all
z, in particular for Izl <1, the expansion (87) will be

.

.,

valid for leaAl < 1; that is, Re(k) < 0,
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Table 1

.

then

.

.

%.

.

T and T-l as functions of e2~

If T =1 ane2nA and T-l ‘.x bne2nA
n=O n=O

n

o

1

2

,3

4

5

6

7

8

9

10

- an

-1.0000

0.2392

0.1087

0.0658

0.0456

0.0342

0.0270

0.0220

0.0185

0.0158

0.0138

bn

1.0000

0.2392

0.1659

0.1315

0.1108

0.0968

0.0865

0.0786

0.0724

0.0672

0.0629

Table 2

The Coefficients of the Series Expansion

of F in Powers of e-h

F . ~ Cne2nF
n=O

co = 0.0000

c1 = 0.0000

C2 = 0.1373

C3 = 0.2858

C4 = 0.4333

C5 = 0.6073

C6 = 0.7241

C7 = 0.8678

C8 = 1.011

C9 = 1.153
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Table 3

The cormspmdl.ng ve.lUH Of Mj T-j 7, q/aO~~

M

0.00

;:E
,0.15
0.20

0.25
0.20
0.35
0.40
0.45

0.50
0.51
0.52
0.55
0.54

0.55
0.56
0.57
0.58
0.59

0.50
0.01
0.62
0.63
0.64

0.65
0.68
0.67
0.66
0.69

0.7’0
o.n
0.72
0.73
0.74

,

for subsonic values of M

T

1.0000
0.9980
0.9950
0.2687
0.9796

0.9683
0.9589
0.9368
0.9165
0.8930

0.8680
0.M02
0.8542
0.8480
o.&17

0.8352
0.8265
0.8216
0.8146
0.8V74

U.8000
0.7924
0.7840
0.‘?766
O.‘7684

0.7599
0.7518
0.7’423
0.7’332
0.7236

o.n~
0.7042
0.6940
,0.6635
0.6723

?

0.000o
0.CO06
o.CQ20
0.0045
0.0079

0.o124
0.0177
0.0239
O.om.l
0.03W

0.0476
0.0496
0.0513
0.0532
0.0551

9,0569
0.0592
0.0610
0.06EII
0.0651

0.0672
0.0683
0.0714
0.0735
0.0757

0.0779
0.0801
0.0824
0.0847
0.0670

0.0693
0.0916
0.0939
0.0963
0.0967

q /a.

0.0000
0.0500
0.10M
0.1487
0,19%3

0.2485
0.3973
0.3458
0.W36
0.94J.6

0.48W
0.4972
0.5065
0.5162
0,5249

0.5336
0.5432
0.5524
0.5614
0.5705

0.5795
0,5865
0,5275
0.6064
0.6153

0.6242

RR
0.6506
0.6583

0.6660
0.6767
0.6654
0.6239
0.7025

+&
2.6282
1.9376
1.5564
1.2548

1.0396
0.8667
0.7240
0.M36
0.5006

0.41.20
0.8956
0.3798
0.3644
0.3425

0.8850
0.3206
o,30n
0.2938
0.2206

0.2662
0.2560
0.2440
0,FXR5
0.221.2

0.2098
0.1886
0.1892
0.1723
0.1626

0.1600
0.1510
0.1421
0.1346
0.I.252

M

0.75
0.76
0.?7
0.78
0.79

0.60
0.81
0.82
0.83
0.64

0.85
0.86
0.87
0.88
0.89

0.90
0.91
0.22
0.83
0.24

0.95
0.86
0.97

:%
1.00

1’

Table 3 (contl d)

T

0.6615
0.6429
0.6380
0.6256
0.6131

0.6000
0.5664
0.5724
0.5578
0.5426

0.5268
0.5103
0.4831
0.4’750
o.456a

0.4359
0.4146
0.5918
0.3@.78
o.3412

0.312s
0.2W3
o.2431
0.1980
0.14H
0.0000

I

-1-

0.1011
0.1036
0.10EJ3
0.1085
0.I.I.20

O.111%
O.UM
0.IJ.85
O.1a.1
0.1237

0.1.263
0.ME9
0.131.5
0.1341
0.1366

0.1384
0.1421
0.1448
0.1475
0.1502

0.1W3
0.1556
0.1584
od1611
0.1639
0.1667

q/s.

O.nsl
o.n28
0.7280
0.7365
0.7448

0.7532
0.7616
0.7699
0.7716
0.78M

0,7245
0.6027
0.8106
0.8189
0.8269

0.8349
0.8429
0.8507
0.6587
0.8666

0.8744
0.6621
0.8892
0.8976
0.8053
0.9129

-A

0.1171
0.1093
0.1018
0.0944
0.0675

0.0607
0.0742
o.o&%l
0.0618
0.0560

0.0505
0.0452
0.040%
0.0354
0.032.9

0.0286
0.0225
0.01.68
0.01.53
0.0120

0.2081
0.0065
0.0042
0.0023
0.0CCJ6
O.woo

1
I
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Table 4

The correspomilng values of M, B, T, daoJ /4

M

1,00
1.01
1.02
1.03
1.c4

1.05
1.06
1.07
1.08
1.09

1.10
1o11
1.12
1.15
1.14

1.15
1.16
1.17
1.18
1.19

1
1.20
1.25
1.30
1.35
1.40

1.46
1.50
1,55
lea
1.85

1.70
1.75
l,ea
1.85

for supersonic values of M

B

0.0000
0.1418
0.2010
0.2468
0.2867

0.3202
0.3516
0.360’7
0.4079
0.4337

0.4583
0.4818
0.504.4
0,5262
0.5474

0.5679
0.5879
0.6074
0.6264
0.8451

0.6633
0.7500
0.8307
0.9069
0.9798

1.0500
1.1120
1.1843
1.2420
1.3124

1.3748
1.4361
1.496’7
1.6564

7

0.1667
0.1695
0.1722
0,1750
0.1779

o.leo7
0.1635
0.1803
0.1892
0.1920

0.1949
0,U377
0.2006
0.2054
0.2063

0.2092
0.2120
0.2149
0.2178
0.2207

0.2236
o.23al
0.2526
0.2671
0.2816

0.2900
0.2.104
0.3257
0.3386
0.3525

0.3663
005798
0.3932
0.4064

~/f30

0.91.29
0.9205
o.92&7
0.2855
0.8430

0.9504
0.9576
0.9652
0.6725
0.6798

0.9870
0.9941
1.0014
1.m66
1.0156

1.0226
1.0297
1.0367
1.0436
1.0505

1.0574
1.0911
1.1236
1,1657
1.1866

1.2166
1.245’7
1.2739
1,3012
1.3277

1.3533
1.3781
1.4021
1.4254

P
O.cmo
o.mo8
0.0020
0.0039
0.0061

0.IX185
0.0110
0.0140
0.0169
0.0203

0.0235
0,0268
0,0304
D.0339
0.0376

0.041.5
0.0466
0.0494
0.0535
0.0577

0.0618
0,0845
0.1076
0,1s19
0.1567

0.1619
0,2076
0,2382
0.2590
0.2772

0,3108
0.3375
0.3618
0.3s59

da.

1.00
1.05
1.10
1.15
1.20

1.26
1.30
1.35
1.40
1.45

1.50
1.65
1.60
1.65
1.70

1,75
1,80
1.86
1.90
1.95

2.00
2.06
2.10
2.16
2.20

6

Table 4 (cent’d)

M

1.1120
1.1692
1.2635
1,3409
1.4221

1.5076
1.5978
1.6935
1.7956
1.2048

2.0226
2.1505
2.2904
2.4446
2.6170

2.8113
3.0339
3.2936
3.6035
3.9846

4.4721
5.1330
6.1133
7.6247
12.2984

m

B

0.5000
o.&437
0.7728
0.8834
1.0112

1.1262
1.2462
1.3667
1.4912
1.6211

1.7581
1.8029
2.0606
2.2809
2.4M4

2.6274
2.8644
3.1391
8.3620
3.6570

4.3689
5.0347
6.0310
7,7605

12.2577

-

-r

0,2000
0.2206
(p&

0:2880

0.3150
0,3380
0.3646
0.3920
0.4205

0.4500
0.4605
0.5120
0.6445
0.5780

0.6125
0.6480
0.6845
0.7220
0,7605

0.0000
0.0405
0.8620
0,9246
0.9660

1.0000

&

1



T

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.65

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

NACA TN No. 1096

Table 5

JhmUiary Functions for Computation of Q(n)

M

1.0000

0.9998

0.9950

0.9887

0.9798

0.9682

0.9539

0.9368

0.9135

0.8931

0.8660

0.8352

0.8000

0.7599

0.7141

0.6615

0,6000

0.5267

9.4358

0.3120

0.0000

F

“d)

-9.5664x107

-1.4791xlo6

-1.275bc105

-2.2109xlo4

-5.5969x103

-1.7922x103

-6.7198fio2

-2.8144d02

-1.2759x102

-6.1200x10

-3.0505xlo

-1.5558xI.O

-7.9987

-4.0789

-2.0215

-0.9453

-0.3964

-0.1336

-0.0257

+0.0000

+-w

1.6676x1012

FJ.1723XU?9

8.0345xL07

5.8077xlo6

7.4153X105

1.3497xlo5

3.1214x104

8.5565x103

2.6553x103

9.0293x102

3.2813x102

1.2482x102

4.8769xI.O

1.9195xlo

7.4369

2.7472

1.1827

0.2477

0.0383

0.0000

J ?i=-aa

8.14~9~012

1.566bd010

3.9617d0°

2.8547ti07

3.6210d06

6.5149x105

1.47971d.05

3.9545xlo4

1.1903xlo4

3.9424x103

1.4400Xlo3

6.0366x102

3.1232x102

2.0784x102

1.6904x102

1.5337xlo2

1.4562x102

1.4039XI02

1.3687x102

l.alsoxloz

78

r

t

O.0000

-0,0021

-0.0084

-o●0193

-0,0350

-0.0561

-0.0837

-0.1188

-0.1631

-0.2190

-0.2890

-0,3806

-0.14987

-0.6559

-0.8719

-1.1823

-1.6684

-2.4667

4.1071

-9.0795

w

.

.

.

.
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Table 6

.

o ● 0000

0.0025

0.0050

0.0100

0.0150

0 ● 0200

0.0300

0.0400

0.0500

0.0600

0.0700

0.0800

0 ● 0900

0.1000

0,1100

0.1200

The.values of df~ and frnj ( *), n
f

20.0000

20.5000

21.0000

22.0000

23.0000

24.0000

26 ● 0000

28.0000

30.0000

32.0000

34.0000

36.0000

38.0000

40 ● 0000

42.0000

44.0000

>

f(p)

1.0000

1.0506

1.1025

1.2100

1.3225

1 ● 4400

1.6900

1.9600

2 ● 2500

2.5600

2.8900

3.2400

3.6100

4.0000

4.4100

4.8400

0.00000

0.00256

0.00525

0.01103

0.01736

0.02426

0 ● 03990

0.05813

0.07917

0.10320

0,13043

0.16107

0.19530

0.23333

0.27537

0.32160

0.0000

0.0003

0.0012

0.0053

0.0124

0.0228

0.0546

0,1034

0.1718

0.2628

0.3793

0.5248

0.7026

0.9166

0.1170

0.1468

= o, 1, 2, 3, 4.

0.0000

0.0000

0.0000

0,0002

0.0006

0.0015

0.0052

0.0129

0.0265

0.0481

0.0799

0.1249

0.1852

0.2666

0.3706

0.5022

f [4]

0.0000

0.0000

0.0000

0,0000

0 ● 0000

0.0000

0.0003

0,0012

0.0031

0.0068

0.0131

0.0232

0.0386

0.0611

0.0927

0.1361

79.
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Table 7

The Values of E
(n) * = 1,2,3,4

A* B H ~ (1) ~ (2) ~(3) E(4)

0.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000
0.0025 1,0040 0.9970 -0.0007 -0.0180 -0.1700 -2 ● 5000
0.0050 1.0080 0,9943 -0,0012 -0.0360 -0.3300 -4.8000
0.0075 1.0118 0 ● 9910 -0.0016 -0.0530 -0.4800 -6.8000
0.0100 1.0156 0.9880 -000019 -0.0700 -0.6200 -8.6000

0.0150 1.0250 0.9825 -0.0027 -o ● 1000 -0.8700 -11.6500
0.0200 1.0300 0.9757 -0.0032 -0.1290 -1.1300 -14.7500
0.0250 1.0365 0.9700 -0.0036 -0.1560 -1.4000 -17.6600
0.0300 1.0427 0.9650 -0.0040 -0.1880 -1.6700 -20.6000
0.0400 1.0560 0.9545 -0.0047 -0.2400 -2.1100 -25.2000

0.0500 1.0690 0 ● 9440 -0.0042 -0.2910 -2.4700 -29.2700
0.0600 1.0813 0.9325 -0.0037 -o*3300 -2.7900 -33.1000
0.0700. 1.0945 0.9210 -0.0023 -0.3710 -3.1500 -36.4000
0.0800 1.1075 0.9115 -o ● 0010 -0.4090 -3,4500 -39.4500
0.0900 1.1210 0.9010 +0.0007 -0.4430 -3.7000 -42.1600

0.1000 1.1335 0.8915 0.0028 -0.4740 -3.9400 -44.1900
0.1100 1.1467 0.8825 0.0053 -0.5060 -4 ● 1200 -46.1000
0.1200 1.1610 0.8735 0.0080 -0.5310 -4.3000 -48.0000
0.1300 1.1735 0.8642 0.0110 -0.5570 -4.4630 -49.5000
0.1400 2.1850 0.8554 0.0143 -0.5840 -4.6150 -50.8000

0.1500 1.1972 0.8476 0.0181 -0.6100 -4.7500 -52.0300
0.1600 1.2110 0.8390 0.0219 -0.6310 -4.9000 -53.0500
0.1’700 1.2235 0.8295 0.0260 -0.6500 -5.0200 -54.0000
0.1800 1.2368 0.8208 0.0300 -0.6700 -5.1400 -54.9000
0.1900 1.2496 0.8120 0.0349 -0.6880 -5.2450 -55.7200

0 ● 2000 1.2615 0.8040 0 ● 0398 -0.7060 -5.3370 -56.6200
0,2100 1.2732 0.7960 0.0443 -0.7250 -5.4200 -57.4000’
0.2200 1.2856 0.7885 000493 -0.7420 -5.5100 -58.0800
0.2300 1.2980 0.7810 0 ● 0547 -0.7560 -5.5950 -!58.5500
o ● 2400 1.3117 0.’7740 0.0603 -0.7710 -5.6720 -59.0000

0.2500 1.3255 0.7664 0.0668 -0.7860 -5.7400 -59.4500
0.2600 1.3370 0.7585 0,0727 -0.8000 -5 ● 8050 -59.8500,

.

.

.
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0.0025

0.0050

D.0100

0.0150

0.0200

0.0300

0.0400

0.0600

0.0800

0.1000

0.I.loo

0.3.200

0.0000
0.0025

0.000o
0.0025
0.0050

0.0000
0.0050
0.0100

0.00Q0
0.0050
0.0100
0.0150

0.0000
0.0050
0.0100
0●0200

0.0000
0.0100
0.0200
0.0300

0.0100
0.0200
0.0300
0.0400

0.0300
0.0400
0.0500
0.0600

0.0500
0.0600
0.0700
0.0800

0.0800
0.0900
0.1000

0.0900
0.1ooo
0.11oo

O.lm
0.1100
0.1200

0.0025
0.0050

0.00
0.00??
0.0100

0.0100
0,0150
0.0200

0.0150
0,0200
0.0250
0.0300

0.0200
0.0250
0.0300
0.0400

0.0300
0.0400
0.0500
0.0600

0.0500
0.0600
0●0700
0.0800

0.0900
0.1ooo
0.1100
0.1200

0.1300
o.l@O
0.1500
0.1600

0.1800
0.1900
0.2000

0.2000
0.2100
0.2200

0.2200
0.2300
0.2400

Table8

v

o .CKW?5
O.mooo

o. 29
o*MM
O.00000

0.00@
30.0050

0.00ooo

0.cm750
0.00500
0.00250
0.00ooo

0.01000
0.00750
0.00500
0.00000

0.01500
0●O1OOO
0.00500
0.000oo

0.01500
0.Olocm
0.00500
O.mooo

0.01500
0.Omoo
0.00500
0.000oo

0.01500
0.01000
0.00500
0.000QO

0.01000
0.00500
O.CKXNIO

0.01000
0.00500
0.00000

0.01000
0.00500
O.m

I

0.3765
0.0000

0. 88
%o. 22

0.000o

1. 801
40. 317

0.000o

2.1950
1.4447
0.7138
0.0000

2.8893
2.U15
1.4u6
O.cooo

4.2344
;.;;g

O:ci)oo

4.046
2.6317
1.2846
0.000o

3.6830
2.400$
1.1746
0.0000

3.3715
2.197$
1.0759
0.0000

2.o11.1
0.9830
O.ocoo

1.9229
0.9401
0.0000

1 ●8391
0.8996
0.0000

81

40.3770
40.751.3

8:IM
41.491J.

ii!$3
. 10

@:92g

42.2395
42.9202
43.6366
44.3730

42.9198
43.6363
4.4.372ti
45.7909

44*3713
45.7899
47.1679
48.4506

47.1655
:;;yt$;

50.9896

52.1909
53.417$
54.6372
55.8202

56.9404
5%.0675
59.2298
60.3022

62.2637
63.222?
64.2081

64.2037
65.1558
66.1.189

66.U41
67.0534
68.0051

+15;.21&

li4%
.

161:U07

%!:%%
171.4925

165.9949
171.2956
176.5320
181.7387

170.7048
;7::E#

192.4503

180.0566
in .7377
203.1159
213.7738

201.7565
213.u60
224.6336
236.4U4

246.9304
259.4997
272.4613
285.9281

W&&

324k47
338.3378

365.5i@5
380.0431
39&.3472

393.9469
408.4693
423.7961

& .4U;

456:3483

1

0,1915
0.0000

0.
?%?0s 9

0.0000

b0.806
0.43.
0.0000

1.2449
0.8564
0.4.413
0.0000

1.7U71
1.3211
0.9077
0.0000

2.7010
1.9174
1.0355
0.0CN30

3.0264
2.1313
1.1231
0.000a

4.4640
3.1016
1.6201
0.0000

3.6556
1.9002
0.0000

3.9396
2.0423
o.oc#o

4.2343
2.1956
0.0000



0.0025

G 0050

0,0100

0,0150

0.0200

0.0300

0.0400

0.0600

0.0800

0● 1000

0,1100

0.1200

0,0000
0.0025

0.0000
0.0025
0.0050

0.0000
0.0050
0,0100

0.0000
0.0050
0.0100
0.0150

0.0000
0.0050
0.0100
0.0200

0.0000
0.0100
0.0200
0.0300

0.0100
0,0200
0.0300
0 ● 0400

0.0300
0 ● 0400
o*0500
0.0600

0.0500
0.0600
0.0700
0.0800

0 ● 0800
0 ● 0900
0 ● 1000

0.0900
0 ● 1000
0.1100

0.1000
0.1100
0.1200

NAOA TN No. 1096
Table 9

The Values of Ml, M2, Mas M4

0.0025
0.0050

0.0050
0.0075
0.0100

0.0100
0.0150
0.0200

0.0150
0.0200
0.0250
0s0300

0.0200
0.0250
0,0300
0 ● 0400

0.0300
0.0400
0.0500
0.0600

0 ● 0500
0.0600
0.0700
0,0800

0.0900
0.1000
0.1100
0.1200

0,1300
0,1400
0.1500
0.1600

0 ● Moo
0.1900
0.2000

0,2000
0,2100
0.2200

0.2200
0,2500
0 ● 2400

r

20.4992
20.4986

20.9984
20.9979
20,9975

21.9968
21.9955
21.9948

22,9945
22.9933
22.9923
22.9912

23.9919
23.9906
23.9892
28.9868

25.9847
25.9811
25.9797
25.9788

27.9719
27.9702
27.$3701
27.9701

31 ● 9443
31.9457
31.9483
31.9520

35.9163
55.9217
35.9289
35.9369

39.9019
39.9163.
39t9304

41.8976
41.9109
41.92’i’O

43.8898
43.9100
43 ● 9509

82

‘2

-0.0005
-0.0005

-0.0011
-0.0010
-o ● 0009

-0.0021
-0.0018
-0.0014

-0.0031
-0.0025
-0.0020
-0.0015

-0.0039
-o ● 003L
-0.0024
-0.0011

-o ● 0051
-0.0029
-0.0008
-t-o.0009

-0.0025
+0.0001
+0,0050
+0.0056

+0.0108
+0.0147
+0.0185
+0.0215

+0.0356
+0,0405
+0.0454
+0,0499

0.0794
0.0855
0.0907

D,1048
0.1114
0.1169

J

0.1342
3.1407
0.1472

‘i5

0.0000
0.0005

0.0000
000004
0.0009

0.0000
0 ● 0007
0 ● 0014

0,0000
0.0006
0 ● 0011
0.0015

0.0000
0.0004
0.0008
0.0011

0.0000
0 ● 0002
‘o● 0000
‘0.0009

o ● 0002
‘0.0010
0.0028
0.0056

0,0061
0.0100
0.0153
0.0215

0.0204
0.0284
0.0382
0.0499

0.0678
o.07i51
0.0907

0.0775
0.0962
0.1169

0.1007
0.1223
0.1472

M4

-19.9993
-20.4986

-19,9988
-20.4981
-20.9975

-19.9981
-20.9964
-21.9946

-1909973
-20.9957
-21.9938
-22.9912

-10.9968
-20.9951
-21,9929
-23.9868

-19.9960
-21.9915
-23,9862
-25.9788

-21.9915
-23.9859
-25.9798
-27.9701

-25.9812
-27.9732
-29.9635
-31.9520

-29.9716
-31.9617
-33.9505
-35.9369

-35.9554
-37.9444
-39.9304

-37.9578
-39.9430
-41.9270

-39.9580
-41.9458
-43.9309

.

.

.
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Table 10

The Values of VL, V2, V, M = H~
Y

2 /lx-=r ?“ J*+?* ‘1 ‘2 v “
).0025 0.0000 0.0025 1.0506 -1.0000 ().0506 0.0504

0.0025 o*0050 0.0000 0 ● 0000 0.0000 0 ● 0000

3.0050 0.0000 0.0050 1.1024 -0.0000 0.1024 0.1018
0.0025 0.0075 1.2024 -1.0506 0.0518 0.0514
0.0050 0.0100 0.0000 0.0000 0.0000 0b0000

3.0100 0.0000 0.0100 1.2099 -1.0000 0.2099 0.2074
0.0050 0.0150 1.2099 -1.1024 0.1074 0.1056
0.o1oo 0.0200 0.0000 0.0000 0.0000 0.0000

2.0150 0.0000 0 ● 0150 1.3224 -1.0000 0.3224 0.3168
0.0050 0 ● 0200 1.3224 -1.1024 0.2199 0.2146
0 ● 0100 0.0250 1.3224 -1.2099 0.1124 0.1091
0 ● 0150 0.0300 0.0000 0.0000 0.0000 0.0000

3● 0200 0.0000 0 ● 0200 1.4398 -1.0000 0.4398 0.4292
0.0050 0.0250 1.4398 -1.1024 0.3373 0.3272
0.0100 0.0300 1.4398 -1.2099 0.2299 0.2218
0.0200 0.0400 0.0000 0.“0000 0.0000 0.0000

9● 0300 0.0000 0 ● 0300 1.6897 -1.0000 0.689? 0.6655
0.0100 0.0400 1.6896 -1.2099 0.4797 0.4579
0 ● 0200 0,0!500 1.6896 -1.4398 0.2498 0.2358
0.0300 0.0600 0.0000 0.0000 0.0000 0.0000

0.0400 0.0100 0.0500 1.9594 -1.2099 0.7494 0.7075
0,0200 0.0600 1.9594 -1.4598 (3.5195 0.4845
0.0300 0.0700 1.9594 -1.6896 0.2697 Q.2484
0.0400 0.0800 0.moo 0.0000 0.0000 0.0000

D.060Q 0.0300 0 ● 0900 2.568’7 -1.6897 0.8689 0.7829
0.0400 0.1000 2.5588 -1.9596 0.5992 0.5341
0.0500 0.1100 2.5589 -2.2494 0.3095 0.2731
0.0600 0.1200 0 ● 0000 0 ● 0000 0.0000 0 ● 0000

0 ● 0800 0.0500 0c1300 3.2381 -2.2497 0.9883 0.8541
0.0600 0 ● 1400 3.2285 -2.5596 0.6788 0.5806
0.0700 0.1500 3.2390 -2.8895 0 ● 3494 0.2961
0.0800 0.1600 0.0000 0.0000 0.0000 0.0000

0.1000 0.0800 0.1800 3.9991 -3.2405 0.7586 0.6226
0.0900 0,1900 4.0001 -3.6107 0,3893 0.3161
0.1000 0.2000 0.0000 0.0000 0.0000 0 ● 0000

0.1100 0.0900 0.2000 4.4101 -3.6116 0.7985 0.6420
0 ● 1000 0.2100 4.4111 -4.0018 0.4092 0.3257
0 ● 1100 0.2200 0 ● 0000 0,0000 0.0000 0.0000

0.1200 0,1000 0 ● 2200 4.8413 -4.002/3 0.8385 0.6611
0.1100 0.2300 4.8428 -4.4135 0.4292 0.3352
0.1200 0.2400 0.0000 0 ● 0000 0.0000 0,0000
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Streamlines of the Supersonic F1OW (53) in the Physical Plane

.

Note that x and y are given only up to a multiplicative

constant and that the flow is symmetric with respect to the

x-axis.

*,, = 0.0 Y =0,1
7?

x Y x Y x Y

4.30 0.00 4.18 0.45 4.03 0.90
8.,40 0000 8.54 0.46 8.19 0.92
13.44 O*OO 1S.78 0.47 13.21 0.94
19.60 0.00 19.58 0.48 19.03 0.96
26.36 0000 26.70 0.49
34 ● 44

25,91 0.98
0.00 34.70 0.50 33.81 0.99

~ = 0.3 ~ = 0.4

x Y x Y

4,11 1,37 4.00 1.82
8.39 1.39 8.12 1.86

13,39 1.42 13.12 1.90
19.29 1.46 18,74 1.94
26.09 1.49 25.68 1.98
33*79 1.53 33.18 2.03

Y * = o~5
Y * = 0.6

x Y x Y

.

4.06 2.2’7 4.28 2.72
8.32 2.32 8.42 2.78

13.26 2.3’7 15.42 2.86
20.16 2.42 19.16 2.89
26.40 2.48 25.96 2.96
34.80 2.54 34*12 3.02

-A

.

.

.

.



.

.

.

.

tJMA TliHO. 1088

.24

. ao \\,

\

.16 \’ \

.la
\

.08

.04

— ~ — — — — —

-%

ni~m I.- -~, bn, O= 0.0funotlonm of n.

.

.

Iv
3.0 -

+. = 0.6

2.0— — — — — — — ~ ~ . — — — — —

0.4

1.0-
o.a

0.0- a o

o.~_
-1.0-

0.4
-a.o-

0,6

‘3-8.0
I I *
5.0 10.0 15.0 ao.o a5.o 30.0 x

Dlagrem11.-Simeamllne8ofthesupe?uonio?1OW(53)Intheph~elaalplane.

85



~+
~ I

...,0 FIRlO (1Ill1Q 4il ~'i?Oc 8853
Bergman. Stetan DIVISION, Aerodynamics (2) 10010. AGENCY NUMIlfQ

SECTION, Fluid Mechanics and Aerodynamic Theory (9)
'I '1N-I096

~ llEfEllfNCES. Aerod3nam!cs. Supersonic (02150);/ ' ',/
Fl"" research - l!ethods (40950); Compressibility -

llEVlSl~

AlJTtlOOfsf Aerod,ynamics (24100); FlOD. Supereonic (40978)
AMfll. TJTLE, Ch supersonic"'and partially' supersonic fl""s

FOflG'N. TITlE, [l)J
OalGINATING AGENCY, National Advisory Ca:;;;dttee tor Aeronautics. Washington. D. C.
TllANSlATION,

~OUNTRY I LANGUAGE r RG•N.cLA55j U. s.cLASS~ I DATE 61PAGESI'UUS'I FEATU~S
U. S. Er18. Uncless. Dec'46 .85 22 tables. graphs. dl'llgs

~'ii'MlClI'

A representation tor a stream tunction ot compressible fluid nlm in terms ot an
arbitrar;r anal;ytic tunction "as improved. Analogous tor stream tunction ot a supersonic
n"" in terms ot t"o arbitrary. tmce differentiable functions ot a real variable is
obtained. lIethod is developed tor extending a subsonic, flD" defined in a portion of the
plane into a larger domain. In some instances. this pr-eeeas leads to partiall;r supersonic
tllms. . - --

~[Q)=fB5~@#- ~~~
T·2. HQ. AJ:l MATEUa COIMIAND

ZS;; ItECHHICAL • Iwmwl W~IJ~III~mll wm~ IW]~ IIWI mil mm =J
-



p';/') P2-
0/ 4

& -z,:5

.: CehL-ffeSs/£Pe. P~vJ
-rSUf?erso n /e:..- .p~ w

50-150 IJ I'c. F£tf)VJ


